Skip to main content
Log in

Is There Evidence to Support the Use of the Angle of Peak Torque as a Marker of Hamstring Injury and Re-Injury Risk?

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Hamstring strain injuries are the predominant injury in many sports, costing athletes and clubs a significant financial and performance burden; therefore, the ability to identify and intervene with individuals who are considered at high risk of injury is important. One measure that has grown in popularity as an outcome variable following hamstring intervention/prevention studies and rehabilitation is the angle of peak knee flexor torque. This current opinion article will firstly introduce the measure and the processes behind it. Second, the article will summarise how the angle of peak knee flexor torque has been suggested to measure hamstring strain injury risk. Finally, the numerous limitations will be presented and the article will outline how these limitations may influence the usefulness of the angle of peak knee flexor torque measure. These include the lack of muscle specificity, the common concentric contraction mode of assessment, reliability of the measure, various neural contributions (such as rate of force development and neuromuscular inhibition), as well as the lack of prospective data showing any predictive value in the measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Orchard J, James T, Alcott E, et al. Injuries in Australian cricket at first class level 1995/1996 to 2000/2001. Br J Sports Med. 2002;36(4):270–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Woods C, Hawkins RD, Maltby S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Brooks JH, Fuller CW, Kemp SP, et al. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34(8):1297–306.

    Article  PubMed  Google Scholar 

  4. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41(4):734–41.

    Article  PubMed  Google Scholar 

  5. Ekstrand J, Hagglund M, Kristenson K, et al. Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):732–7.

    Article  PubMed  Google Scholar 

  6. Hickey J, Shield AJ, Williams MD, et al. The financial cost of hamstring strain injuries in the Australian Football League. Br J Sports Med. 2014;48(8):729–30.

    Article  PubMed  Google Scholar 

  7. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  8. Arnason A, Sigurdsson SB, Gudmundsson A, et al. Risk factors for injuries in football. Am J Sports Med. 2004;32(1 Suppl):5S–16S.

    Article  PubMed  Google Scholar 

  9. Gabbe BJ, Bennell KL, Finch CF. Why are older Australian football players at greater risk of hamstring injury? J Sci Med Sport. 2006;9(4):327–33.

    Article  PubMed  Google Scholar 

  10. Croisier JL, Ganteaume S, Binet J, et al. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36(8):1469–75.

    Article  PubMed  Google Scholar 

  11. Sugiura Y, Saito T, Sakuraba K, et al. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. J Orthop Sports Phys Ther. 2008;38(8):457–64.

    Article  PubMed  Google Scholar 

  12. Opar D, Williams M, Timmins R, et al. Eccentric hamstring strength and hamstring injury risk in Australian Footballers. Med Sci Sports Exerc. 2015;47(4):857–65.

    Article  PubMed  Google Scholar 

  13. Proske U, Morgan DL, Brockett CL, et al. Identifying athletes at risk of hamstring strains and how to protect them. Clin Exp Pharmacol Physiol. 2004;31(8):546–50.

    Article  PubMed  CAS  Google Scholar 

  14. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87.

    Article  PubMed  Google Scholar 

  15. Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–90.

    Article  PubMed  CAS  Google Scholar 

  16. Brughelli M, Nosaka K, Cronin J. Application of eccentric exercise on an Australian Rules football player with recurrent hamstring injuries. Phys Ther. 2009;10(2):75–80.

    Google Scholar 

  17. Brughelli M, Mendiguchia J, Nosaka K, et al. Effects of eccentric exercise on optimum length of the knee flexors and extensors during the preseason in professional soccer players. Phys Ther. 2010;11(2):50–5.

    Google Scholar 

  18. Warren P, Gabbe BJ, Schneider-Kolsky M, et al. Clinical predictors of time to return to competition and of recurrence following hamstring strain in elite Australian footballers. Br J Sports Med. 2010;44(6):415–9.

    Article  PubMed  Google Scholar 

  19. Heiderscheit BC, Sherry MA, Silder A, et al. Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther. 2010;40(2):67–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005;15(6):436–41.

    Article  PubMed  Google Scholar 

  21. McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports. 2010;20(2):169–81.

    PubMed  CAS  Google Scholar 

  22. Morgan DL, Proske U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin Exp Pharmacol Physiol. 2004;31(8):541–5.

    Article  PubMed  CAS  Google Scholar 

  23. Newton RU, Gerber A, Nimphius S, et al. Determination of functional strength imbalance of the lower extremities. J Strength Cond Res. 2006;20(4):971–7.

    PubMed  Google Scholar 

  24. Heiderscheit BC, Hoerth DM, Chumanov ES, et al. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech (Bristol Avon). 2005;20(10):1072–8.

    Article  Google Scholar 

  25. Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport. 2006;9(1–2):103–9.

    Article  PubMed  CAS  Google Scholar 

  26. Reisman S, Walsh LD, Proske U. Warm-up stretches reduce sensations of stiffness and soreness after eccentric exercise. Med Sci Sports Exerc. 2005;37(6):929–36.

    PubMed  Google Scholar 

  27. Brukner P, Nealon A, Morgan C, et al. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme. Br J Sports Med. 2014;48(11):929–38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morgan DL. New insights into the behavior of muscle during active lengthening. Biophys J. 1990;57(2):209–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647–66.

    Article  PubMed  CAS  Google Scholar 

  30. Lieber RL, Friden J. Mechanisms of muscle injury after eccentric contraction. J Sci Med Sport. 1999;2(3):253–65.

    Article  PubMed  CAS  Google Scholar 

  31. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1466–76.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol (1985). 1999;87(6):2007–15.

    CAS  Google Scholar 

  33. Garrett WE, Nikolaou PK, Ribbeck BM, et al. The effect of muscle architecture on the biomechanical failure properties of skeletal-muscle under passive extension. Am J Sports Med. 1988;16(1):7–12.

    Article  PubMed  Google Scholar 

  34. Philippou A, Bogdanis GC, Nevill AM, et al. Changes in the angle-force curve of human elbow flexors following eccentric and isometric exercise. Eur J Appl Physiol. 2004;93(1–2):237–44.

    Article  PubMed  Google Scholar 

  35. Knapik JJ, Wright JE, Mawdsley RH, et al. Isokinetic, isometric and isotonic strength relationships. Arch Phys Med Rehabil. 1983;64(2):77–80.

    PubMed  CAS  Google Scholar 

  36. Brughelli M, Cronin J, Nosaka K. Muscle architecture and optimum angle of the knee flexors and extensors: a comparison between cyclists and Australian Rules football players. J Strength Cond Res. 2010;24(3):717–21.

    Article  PubMed  Google Scholar 

  37. Lynn R, Talbot JA, Morgan DL. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol (1985). 1998;85(1):98–104.

    CAS  Google Scholar 

  38. Opar DA, Williams MD, Timmins RG, et al. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703.

    Article  PubMed  Google Scholar 

  39. Schache AG, Wrigley TV, Baker R, et al. Biomechanical response to hamstring muscle strain injury. Gait Posture. 2009;29(2):332–8.

    Article  PubMed  Google Scholar 

  40. Gleeson NP, Mercer TH. The utility of isokinetic dynamometry in the assessment of human muscle function. Sports Med. 1996;21(1):18–34.

    Article  PubMed  CAS  Google Scholar 

  41. Thelen DG, Chumanov ES, Hoerth DM, et al. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc. 2005;37(1):108–14.

    Article  PubMed  Google Scholar 

  42. Aagaard P, Simonsen EB, Andersen JL, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985). 2002;93(4):1318–26.

    Article  Google Scholar 

  43. Grabiner MD, Owings TM. EMG differences between concentric and eccentric maximum voluntary contractions are evident prior to movement onset. Exp Brain Res. 2002;145(4):505–11.

    Article  PubMed  CAS  Google Scholar 

  44. Koulouris G, Connell DA, Brukner P, et al. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sports Med. 2007;35(9):1500–6.

    Article  PubMed  Google Scholar 

  45. Timmins R, Shield A, Williams M, et al. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13.

    Article  PubMed  Google Scholar 

  46. Askling CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  47. Schache AG, Dorn TW, Blanch PD, et al. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58.

    Article  PubMed  Google Scholar 

  48. Babault N, Pousson M, Ballay Y, et al. Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol (1985). 2001;91(6):2628–34.

    CAS  Google Scholar 

  49. Enoka RM. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol (1985). 1996;81(6):2339–46.

    CAS  Google Scholar 

  50. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.

    Article  PubMed  CAS  Google Scholar 

  51. Phillips BA, Lo SK, Mastaglia FL. Isokinetic and isometric torque values using a Kin-Com dynamometer in normal subjects aged 20 to 69 years. Isokinet Exerc Sci. 2000;8(3):147–59.

    CAS  Google Scholar 

  52. Dauty M, Rochcongar P. Reproducibility of concentric and eccentric isokinetic strength of the knee flexors in elite volleyball players. Isokinet Exerc Sci. 2001;9(2):129–32.

    Google Scholar 

  53. Blazevich AJ, Cannavan D, Coleman DR, et al. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103(5):1565–75.

    Article  PubMed  Google Scholar 

  54. Maffiuletti NA, Bizzini M, Desbrosses K, et al. Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clin Physiol Funct Imaging. 2007;27(6):346–53.

    Article  PubMed  Google Scholar 

  55. Visser JJ, Hoogkamer JE, Bobbert MF, et al. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):453–60.

    Article  PubMed  CAS  Google Scholar 

  56. Schache AG, Dorn TW, Wrigley TV, et al. Stretch and activation of the human biarticular hamstrings across a range of running speeds. Eur J Appl Physiol. 2013;113(11):2813–28.

    Article  PubMed  Google Scholar 

  57. Chumanov ES, Schache AG, Heiderscheit BC, et al. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90.

    Article  PubMed  Google Scholar 

  58. Penailillo L, Blazevich A, Numazawa H, et al. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25(3):417–27.

    Article  PubMed  CAS  Google Scholar 

  59. Frigon A, Thompson CK, Johnson MD, et al. Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats. J Neurosci. 2011;31(15):5579–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Brockett CL, Morgan DL, Gregory JE, et al. Damage to different motor units from active lengthening of the medial gastrocnemius muscle of the cat. J Appl Physiol. 2002;92(3):1104–10.

    Article  PubMed  CAS  Google Scholar 

  61. Sole G, Milosavljevic S, Nicholson HD, et al. Selective strength loss and decreased muscle activity in hamstring injury. J Orthop Sports Phys Ther. 2011;41(5):354–63.

    Article  PubMed  Google Scholar 

  62. Opar DA, Williams MD, Timmins RG, et al. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am J Sports Med. 2013;41(1):116–25.

    Article  PubMed  Google Scholar 

  63. Bahr R, Holme I. Risk factors for sports injuries: a methodological approach. Br J Sports Med. 2003;37(5):384–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yeung SS, Suen AM, Yeung EW. A prospective cohort study of hamstring injuries in competitive sprinters: preseason muscle imbalance as a possible risk factor. Br J Sports Med. 2009;43(8):589–94.

    Article  PubMed  CAS  Google Scholar 

  65. Kellis E, Galanis N, Natsis K, et al. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42(15):2549–54.

    Article  PubMed  Google Scholar 

  66. Chleboun GS, France AR, Crill MT, et al. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs. 2001;169(4):401–9.

    Article  PubMed  CAS  Google Scholar 

  67. Bagni MA, Cecchi G, Colomo F, et al. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres. J Physiol. 1988;401:581–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966;184(1):170–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Stuart Cormack for reviewing the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan G. Timmins.

Ethics declarations

Conflicts of interest

Ryan G. Timmins, Anthony J. Shield, Morgan D. Williams, and David A. Opar confirm that they have no conflicts of interest in regard to the present paper.

Funding

No sources of funding were used to assist in the preparation of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmins, R.G., Shield, A.J., Williams, M.D. et al. Is There Evidence to Support the Use of the Angle of Peak Torque as a Marker of Hamstring Injury and Re-Injury Risk?. Sports Med 46, 7–13 (2016). https://doi.org/10.1007/s40279-015-0378-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0378-8

Keywords

Navigation