Skip to main content
Log in

Current and Emerging Agents for the Treatment of Hypoglycemia in Patients with Congenital Hyperinsulinism

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycmia in neonatles and children. The inappropriate secretion of insulin by the pancreatic β-cells produces recurrent hypoglycemia, which can lead to severe and permanent brain damage. CHI results from mutations in different genes that play a role in the insulin secretion pathway, and each differs in their responsiveness to medical treatment. Currently, the only available approved treatment for hyperinsulinism is diazoxide. Patients unresponsive to diazoxide may benefit from specialized evaluation including genetic testing and 18F-DOPA PET to identify those with focal forms of CHI. The focal forms can be cured by selective pancreatectomy, but the management of diazoxide-unresponsive diffuse CHI is a real therapeutic challenge. Current off-label therapies include intravenous glucagon, octreotide and long-acting somatostatin analogs; however, they are often insufficient, and a 98% pancreatectomy or continuous feeds may be required. For the first time in over 40 years, new drugs are being developed, but none have made it to market yet. In this review, we will discuss current on-label and off-label drugs and review the currently available data on the novel drugs under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Leon DD, Stanley CA. congenital hypoglycemia disorders: new aspects of etiology, diagnosis, treatment and outcomes: highlights of the proceedings of the Congenital Hypoglycemia Disorders Symposium, Philadelphia April 2016. Pediatr Diabetes. 2017;18:3–9.

    Article  Google Scholar 

  2. De León DD, Stanley CA. Determination of insulin for the diagnosis of hyperinsulinemic hypoglycemia. Best Pract Res Clin Endocrinol Metab. 2013;27:763–9.

    Article  Google Scholar 

  3. Arya VB, Flanagan SE, Schober E, Rami-Merhar B, Ellard S, Hussain K. Activating AKT2 mutation: hypoinsulinemic hypoketotic hypoglycemia. J Clin Endocrinol Metab. 2014;99:391–4.

    Article  CAS  Google Scholar 

  4. Minic M, Rocha N, Harris J, et al. Constitutive activation of AKT2 in humans leads to hypoglycemia without fatty liver or metabolic dyslipidemia. J Clin Endocrinol Metab. 2017;102:2914–21.

    Article  Google Scholar 

  5. Leiter SM, Parker VER, Welters A, et al. Hypoinsulinaemic, hypoketotic hypoglycaemia due to mosaic genetic activation of PI3-kinase. Eur J Endocrinol. 2017;177:175–86.

    Article  CAS  Google Scholar 

  6. Nessa A, Rahman SA, Hussain K. Hyperinsulinemic hypoglycemia—the molecular mechanisms. Front Endocrinol (Lausanne). 2016;7:1–14.

    Article  Google Scholar 

  7. Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. Int J Pediatr Endocrinol. 2017;2017:1–18.

    Article  Google Scholar 

  8. Rahman SA, Nessa A, Hussain K. Molecular mechanisms of congenital hyperinsulinism. J Mol Endocrinol. 2015;54:119–29.

    Article  Google Scholar 

  9. Babiker O, Flanagan SE, Ellard S, Al Girim H, Hussain K, Senniappan S. Protein-induced hyperinsulinaemic hypoglycaemia due to a homozygous HADH mutation in three siblings of a Saudi family. J Pediatr Endocrinol Metab. 2015;28:1073–7.

    Article  CAS  Google Scholar 

  10. Shah KK, O’Dell SD. Effect of dietary interventions in the maintenance of normoglycaemia in glycogen storage disease type 1a: a systematic review and meta-analysis. J Hum Nutr Diet. 2013;26:329–39.

    Article  CAS  Google Scholar 

  11. Vajravelu ME, Congdon M, Mitteer L, Koh J, Givler S, Shults J, De León DD. Continuous intragastric dextrose: a therapeutic option for refractory hypoglycemia in congenital hyperinsulinism. Horm Res Paediatr. 2018. https://doi.org/10.1159/000491105.

    Article  PubMed  Google Scholar 

  12. Drash A, Kenny F, Field J, Blizzard R, Langs H, Wolff F. The therapeutic application of diazoxide in pediatric hypoglycemic states. Ann N Y Acad Sci. 1968;11:337–55.

    Article  Google Scholar 

  13. Yorifuji T. Congenital hyperinsulinism: current status and future perspectives. Ann Pediatr Endocrinol Metab. 2014;19:57–68.

    Article  Google Scholar 

  14. Kizu R, Nishimura K, Sato R, Kosaki K, Tanaka T, Tanigawara Y, Hasegawa T. Population pharmacokinetics of diazoxide in children with hyperinsulinemic hypoglycemia. Horm Res Paediatr. 2017;88:316–23.

    Article  CAS  Google Scholar 

  15. Ackermann AM, Palladino AA. Managing congenital hyperinsulinism: improving outcomes with a multidisciplinary approach. Res Rep Endocr Disord. 2015;5:103–17.

    Google Scholar 

  16. Herrera A, Vajravelu ME, Givler S, Mitteer L, Avitabile CM, Lord K, De León DD. Prevalence of adverse events in children with congenital hyperinsulinism treated with diazoxide. J Clin Endocrinol Metab. 2018;103:4365–72.

    Article  Google Scholar 

  17. U.S. Food and Drug Administration. FDA drug safety communication: FDA warns about a serious lung condition in infants and newborns treated with Proglycem (diazoxide). https://www.fda.gov/Drugs/DrugSafety/ucm454833.htm. Accessed 16 July 2015.

  18. Thornton P, Truong L, Reynolds C, Hamby T, Nedrelow J. Rate of serious adverse events associated with diazoxide treatment of patients with hyperinsulinism. Horm Res Paediatr. 2019:1–8.

  19. Gray KD, Dudash K, Escobar C, et al. Prevalence and safety of diazoxide in the neonatal intensive care unit. J Perinatol. 2018;38:1496–502.

    Article  CAS  Google Scholar 

  20. Mangla P, Hussain K, Ellard S, Flanagan SE, Bhatia V. Diazoxide toxicity in a child with persistent hyperinsulinemic hypoglycemia of infancy: mixed hyperglycemic hyperosmolar coma and ketoacidosis. J Pediatr Endocrinol Metab. 2018;31:943–5.

    Article  Google Scholar 

  21. Thornton P, Alter C, Katz L, Baker L, Stanley C. Short- and long-term use of octreotide in the treatment of congenital hyperinsulinism. J Pediatr. 1993;123:637–43.

    Article  CAS  Google Scholar 

  22. Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects. Gut. 1994;35:S1–4.

    Article  CAS  Google Scholar 

  23. Bruns C, Weckbecker G, Raulf F, Kaupmann K, Schoeffter P, Hoyer D, Lübbert H. Molecular pharmacology of somatostatin-receptor subtypes. Ann N Y Acad Sci. 1994;733:138–46.

    Article  CAS  Google Scholar 

  24. Doyle ME, Egan JM. Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev. 2003;55:106–26.

    Article  Google Scholar 

  25. Arnoux J-B, de Lonlay P, Ribeiro M-J, et al. Congenital hyperinsulinism. Early Hum Dev. 2010;86:287–94.

    Article  CAS  Google Scholar 

  26. Shah P, Rahman SA, Demirbilek H, Güemes M, Hussain K. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol. 2017;5:729–42.

    Article  CAS  Google Scholar 

  27. Palladino AA, Stanley CA. A specialized team approach to diagnosis and medical versus surgical treatment of infants with congenital hyperinsulinism. Semin Pediatr Surg. 2011;20:32–7.

    Article  Google Scholar 

  28. Yorifuji T, Horikawa R, Hasegawa T, et al. Clinical practice guidelines for congenital hyperinsulinism. Clin Pediatr Endocrinol. 2017;26:127–52.

    Article  Google Scholar 

  29. Yorifuji T, Kawakita R, Hosokawa Y, Fujimaru R, Matsubara K, Aizu K, Suzuki S, Nagasaka H, Nishibori H, Masue M. Efficacy and safety of long-term, continuous subcutaneous octreotide infusion for patients with different subtypes of KATP-channel hyperinsulinism. Clin Endocrinol (Oxf). 2013;78:891–7.

    Article  CAS  Google Scholar 

  30. Demirbilek H, Shah P, Arya VB, Hinchey L, Flanagan SE, Ellard S, Hussain K. Long-term follow-up of children with congenital hyperinsulinism on octreotide therapy. J Clin Endocrinol Metab. 2014;99:3660–7.

    Article  CAS  Google Scholar 

  31. Hawkes CP, Adzick NS, Palladino AA, De León DD. Late presentation of fulminant necrotizing enterocolitis in a child with hyperinsulinism on octreotide therapy. Horm Res Paediatr. 2016;86:131–6.

    Article  CAS  Google Scholar 

  32. Alsaedi AA, Bakkar AA, Kamal NM, Althobiti JM. Late presentation of necrotizing enterocolitis associated with rotavirus infection in a term infant with hyperinsulinism on octreotide therapy: a case report. Medicine (Baltimore). 2017;96:1–3.

    Article  Google Scholar 

  33. McMahon AW, Wharton GT, Thornton P, De Leon DD. Octreotide use and safety in infants with hyperinsulinism. Pharmacoepidemiol Drug Saf. 2017;26:26–31.

    Article  CAS  Google Scholar 

  34. Astruc B, Marbach P, Bouterfa H, Denot C, Safari M, Vitaliti A, Sheppard M. Long-acting octreotide and prolonged-release lanreotide formulations have different pharmacokinetic profiles. J Clin Pharmacol. 2005;45:836–44.

    Article  CAS  Google Scholar 

  35. Chen T, Miller TF, Prasad P, Lee J, Krauss J, Miscik K, Kalafsky G, McLeod JF. Pharmacokinetics, pharmacodynamics, and safety of microencapsulated octreotide acetate in healthy subjects. J Clin Pharmacol. 2000;40:475–81.

    Article  Google Scholar 

  36. Van Der Steen I, Van Albada ME, Mohnike K, et al. A multicenter experience with long-acting somatostatin analogues in patients with congenital hyperinsulinism. Horm Res Paediatr. 2018;89:82–9.

    Article  Google Scholar 

  37. Modan-Moses D, Koren I, Mazor-Aronovitch K, Pinhas-Hamiel O, Landau H. Treatment of congenital hyperinsulinism with lanreotide acetate (Somatuline Autogel). J Clin Endocrinol Metab. 2011;96:2312–7.

    Article  CAS  Google Scholar 

  38. Kühnen P, Marquard J, Ernert A, Meissner T, Raile K, Wannenmacher G, Blankenstein O. Long-term lanreotide treatment in six patients with congenital hyperinsulinism. Horm Res Paediatr. 2012;78:106–12.

    Article  Google Scholar 

  39. Shah P, Rahman SA, McElroy S, Gilbert C, Morgan K, Hinchey L, Senniappan S, Levy H, Amin R, Hussain K. Use of long-acting somatostatin analogue (lanreotide) in an adolescent with diazoxide-responsive congenital hyperinsulinism and its psychological impact. Horm Res Paediatr. 2015;84:355–60.

    Article  CAS  Google Scholar 

  40. Le Quan Sang KH, Arnoux JB, Mamoune A, et al. Successful treatment of congenital hyperinsulinism with long-acting release octreotide. Eur J Endocrinol. 2012;166:333–9.

    Article  Google Scholar 

  41. Al-Zubeidi H, Gottschalk ME, Newfield RS. Successful use of long acting octreotide in two cases with Beckwith-Wiedemann syndrome and severe hypoglycemia. Int J Pediatr Endocrinol. 2014;1:1–4.

    Google Scholar 

  42. Corda H, Kummer S, Welters A, Teig N, Klee D, Mayatepek E, Meissner T. Treatment with long-acting lanreotide autogel in early infancy in patients with severe neonatal hyperinsulinism. Orphanet J Rare Dis. 2017;12:1–8.

    Article  Google Scholar 

  43. Dastamani A, Güemes M, Pitfield C, Morgan K, Rajab M, Rottenburger C, Bomanji J, De Coppi P, Dattani M, Shah P. The use of a long-acting somatostatin analogue (lanreotide) in three children with focal forms of congenital hyperinsulinaemic hypoglycaemia. Horm Res Paediatr. 2018:1–6.

  44. Hawkes CP, Lado JJ, Givler S, De Leon DD. The effect of continuous intravenous glucagon on glucose requirements in infants with congenital hyperinsulinism. JIMD Rep. 2019;45:45–50.

    Article  Google Scholar 

  45. Senniappan S, Brown RE, Hussain K. Genomic and morphoproteomic correlates implicate the IGF-1:mTOR: Akt pathway in the pathogenesis of diffuse congenital hyperinsulinism. Int J Clin Exp Pathol. 2016;9:548–62.

    CAS  Google Scholar 

  46. Bussiere CT, Lakey JRT, Shapiro AMJ, Korbutt GS. The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia. 2006;49:2341–9.

    Article  CAS  Google Scholar 

  47. Di Paolo S, Teutonico A, Leogrande D, Capobianco C, Schena P. Chronic inhibition of mammalian target of rapamycin signaling downregulates insulin receptor substrates 1 and 2 and AKT activation: a crossroad between cancer and diabetes? J Am Soc Nephrol. 2006;17:2236–44.

    Article  Google Scholar 

  48. Szymanowski M, Estebanez MS, Padidela R, et al. mTOR inhibitors for the treatment of severe congenital hyperinsulinism: perspectives on limited therapeutic success. J Clin Endocrinol Metab. 2016;101:4719–29.

    Article  CAS  Google Scholar 

  49. Pallet N, Legendre C. Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf. 2013;12:177–86.

    Article  CAS  Google Scholar 

  50. Senniappan S, Alexandrescu S, Tatevian N, et al. Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. N Engl J Med. 2014;370:1131–7.

    Article  CAS  Google Scholar 

  51. Meder U, Bokodi G, Balogh L, Korner A, Szabo M, Pruhova S, Szabo AJ. Severe hyperinsulinemic hypoglycemia in a neonate: response to sirolimus therapy. Pediatrics. 2015;136:1369–72.

    Article  Google Scholar 

  52. Shah P, Arya VB, Flanagan SE, Morgan K, Ellard S, Senniappan S, Hussain K. Sirolimus therapy in a patient with severe hyperinsulinaemic hypoglycaemia due to a compound heterozygous ABCC8 gene mutation. J Pediatr Endocrinol Metab. 2015;28:695–9.

    Article  CAS  Google Scholar 

  53. Ünal S, Gönülal D, Uçaktürk A, et al. A novel homozygous mutation in the KCNJ11 gene of a neonate with congenital hyperinsulinism and successful management with sirolimus. J Clin Res Pediatr Endocrinol. 2016;8:478–81.

    Article  Google Scholar 

  54. Korula S, Chapla A, Priyambada L, Mathai S, Simon A. Sirolimus therapy for congenital hyperinsulinism in an infant with a novel homozygous KCNJ11 mutation. J Pediatr Endocrinol Metab. 2018;31:87–9.

    Article  CAS  Google Scholar 

  55. Banerjee I, De Leon D, Dunne MJ. Extreme caution on the use of sirolimus for the congenital hyperinsulinism in infancy patient. Orphanet J Rare Dis. 2017;12:1–3.

    Article  Google Scholar 

  56. Lindley KJ, Dunne MJ, Kane C, et al. Ionic control of beta cell function in nesidioblastosis. A possible therapeutic role for calcium channel blockade. Arch Dis Child. 1996;74:373–8.

    Article  CAS  Google Scholar 

  57. Güemes M, Shah P, Silvera S, Morgan K, Gilbert C, Hinchey L, Hussain K. Assessment of nifedipine therapy in hyperinsulinemic hypoglycemia due to mutations in the ABCC8 gene. J Clin Endocrinol Metab. 2017;102:822–30.

    PubMed  Google Scholar 

  58. Neylon OM, Moran MM, Pellicano A, Nightingale M, O’Connell MA. Successful subcutaneous glucagon use for persistent hypoglycaemia in congenital hyperinsulinism. J Pediatr Endocrinol Metab. 2013;26:1157–61.

    Article  CAS  Google Scholar 

  59. De León DD, Li C, Delson MI, Matschinsky FM, Stanley CA, Stoffers DA. Exendin-(9-39) corrects fasting hypoglycemia in SUR-1−/− mice by lowering camp in pancreatic β-cells and inhibiting insulin secretion. J Biol Chem. 2008;283:25786–93.

    Article  Google Scholar 

  60. Calabria AC, Charles L, Givler S, De León DD. Postprandial hypoglycemia in children after gastric surgery: clinical characterization and pathophysiology. Horm Res Paediatr. 2016;85:140–6.

    Article  CAS  Google Scholar 

  61. Calabria AC, Li C, Gallagher PR, Stanley CA, De León DD. GLP-1 receptor antagonist exendin-(9-39) elevates fasting blood glucose levels in congenital hyperinsulinism owing to inactivating mutations in the ATP-sensitive K + channel. Diabetes. 2012;61:2585–91.

    Article  CAS  Google Scholar 

  62. Mohnike K, Blankenstein O, Pfuetzner A, Potzsch S, Schober E, Steiner S, Hardy OT, Grimberg A, van Waarde WM. Long-term non-surgical therapy of severe persistent congenital hyperinsulinism with glucagon. Horm Res. 2008;70:59–64.

    Article  CAS  Google Scholar 

  63. Hövelmann U, Bysted BV, Mouritzen U, Macchi F, Lamers D, Kronshage B, Møller DV, Heise T. Pharmacokinetic and pharmacodynamic characteristics of dasiglucagon, a novel soluble and stable glucagon analog. Diabetes Care. 2018;41:531–7.

    Article  Google Scholar 

  64. Vignes R. Dimethyl Sulfoxide DMSO. A “NEW” clean, unique, superior solvent. Presented at the American Chemical Society Annual Meeting. Washington D.C.; 2000.

  65. Castle JR, El Youssef J, Branigan D, Newswanger B, Strange P, Cummins M, Shi L, Prestrelski S. Comparative pharmacokinetic/pharmacodynamic study of liquid stable glucagon versus lyophilized glucagon in type 1 diabetes subjects. J Diabetes Sci Technol. 2016;10:110–7.

    Google Scholar 

  66. Haymond MW, Schreiner B. Mini-dose glucagon rescue for hypoglycemia in children with type 1 diabetes. Diabetes Care. 2001;24:643–5.

    Article  CAS  Google Scholar 

  67. Rickels MR, DuBose SN, Toschi E, Beck RW, Verdejo AS, Wolpert H, Cummins MJ, Newswanger B, Riddell MC. Mini-dose Glucagon as a novel approach to prevent exercise-induced hypoglycemia in type 1 diabetes. Diabetes Care. 2018;41:1909–16.

    Article  CAS  Google Scholar 

  68. Coughlin CC, Roy SM, Arkin LM, Adzick NS, Yan AC, De León DD, Rubin AI. Iatrogenic necrolytic migratory erythema in an infant with congenital hyperinsulinism. Pediatr Dermatol. 2016;33:43–7.

    Article  Google Scholar 

  69. Corbin JA, Bhaskar V, Goldfine ID, et al. Inhibition of insulin receptor function by a human, allosteric monoclonal antibody A potential new approach for the treatment of hyperinsulinemic hypoglycemia. MAbs. 2014;6:262–72.

    Article  Google Scholar 

  70. Patel P, Charles L, Corbin J, Goldfine ID, Johnson K, Rubin P, De León DD. A unique allosteric insulin receptor monoclonal antibody that prevents hypoglycemia in the SUR-1−/− mouse model of KATP hyperinsulinism. MAbs. 2018;10:796–802.

    Article  CAS  Google Scholar 

  71. Nath R, Johnson KW, Roessig JM, Der K, Neale AC, Rubin P, Goldfine ID. XOMA 358, a novel treatment for hyperinsulinemic hypoglycemia: safety and clinical pharmacology from the first in human trial. Poster presented at The Endocrine Society’s 97th Annual Meeting & Expo March 5–8, 2015, San Diego, CA. Endocr Rev 36(Supplement 2). 2015.

  72. Johnson KW, Neale AC, Gordon A, De Leon-Crutchlow DC, Hussain K, Mohnike KL, Vukelich S, Roessig JM, Rubin PD. Activity of Xoma 358, an inhibitor of insulin action following short-term administration to congenital hyperinsulinism patients. Poster presented at The Endocrine Society’s 99th Annual Meeting & Expo April 1–4, 2017, Orlando, FL. Endocr Rev 38(Supplement). 2017.

  73. van Veen MR, van Hasselt PM, de Sain-van der Velden MGM, Verhoeven N, Hofstede FC, de Koning TJ, Visser G. Metabolic profiles in children during fasting. Pediatrics. 2011;127:1021–1027.

  74. Demirbilek H, Hussain K. Congenital hyperinsulinism: diagnosis and treatment update. J Clin Res Pediatr Endocrinol. 2017;9:69–87.

    PubMed  PubMed Central  Google Scholar 

  75. Otonkoski T, Jiao H, Kaminen-Ahola N, et al. Physical exercise–induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am J Hum Genet. 2007;81:467–74.

    Article  CAS  Google Scholar 

  76. Ferrara CT, Boodhansingh KE, Paradies E, et al. Novel hypoglycemia phenotype in congenital hyperinsulinism due to dominant mutations of uncoupling protein 2. J Clin Endocrinol Metab. 2017;102:942–9.

    Article  Google Scholar 

  77. Kapoor RR, Heslegrave A, Hussain K. Congenital hyperinsulinism due to mutations in HNF4A and HADH. Rev Endocr Metab Disord. 2010;11:185–91.

    Article  CAS  Google Scholar 

  78. Pinney SE, Ganapathy K, Bradfield J, et al. Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm Res Paediatr. 2013;80:18–27.

    Article  CAS  Google Scholar 

  79. Wong SYW, Gadomski T, Kozicz T, et al. Defining the phenotype and assessing severity in phosphoglucomutase-1 deficiency. J Pediatr. 2016;175:130–6.

    Article  CAS  Google Scholar 

  80. Tegtmeyer LC, Rust S, van Scherpenzeel M, et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014;370:533–42.

    Article  CAS  Google Scholar 

  81. Cabezas OR, Flanagan SE, Stanescu H, et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. J Am Soc Nephrol. 2017;28:2529–39.

    Article  CAS  Google Scholar 

  82. Flanagan SE, Vairo F, Johnson MB, Caswell R, Laver TW, Lango Allen H, Hussain K, Ellard S. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia. Pediatr Diabetes. 2017;18:320–3.

    Article  CAS  Google Scholar 

  83. Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M, Didi M, Gaston-Massuet C, Senniappan S. Novel FOXA2 mutation causes hyperinsulinism, hypopituitarism with craniofacial and endoderm-derived organ abnormalities. Hum Mol Genet. 2017;26:4315–26.

    Article  CAS  Google Scholar 

  84. Ferrara C, Patel P, Becker S, Stanley CA, Kelly A. Biomarkers of insulin for the diagnosis of hyperinsulinemic hypoglycemia in infants and children. J Pediatr. 2016;168:212–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Thornton.

Ethics declarations

Funding

Funding for the preparation of this manuscript was provided in part by the Cook Children’s Health Care System Endowed Chair program.

Conflict of interest

Paul Thornton has received consulting fees from Xeris Pharmaceuticals (the maker of stable liquid glucagon) and is a PI for both Xeris and Zealand in studies involving an investigational new drug for the treatment of congenital hyperinsulinism. Ana P. De Cosio has no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Cosio, A.P., Thornton, P. Current and Emerging Agents for the Treatment of Hypoglycemia in Patients with Congenital Hyperinsulinism. Pediatr Drugs 21, 123–136 (2019). https://doi.org/10.1007/s40272-019-00334-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-019-00334-w

Navigation