Skip to main content
Log in

Treating Lower Urinary Tract Symptoms in Older Adults: Intravesical Options

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

This article provides an overview of the diagnosis and the treatment of lower urinary tract symptoms in older adults complicated by the neurodegenerative changes in the micturition reflex and further confounded by age-related decline in hepatic and renal clearance raising the propensity of adverse drug reactions. The first-line drug treatment for lower urinary tract symptoms, orally administered antimuscarinics, fails to reach the equilibrium dissociation constant of muscarinic receptors even at their maximum plasma concentration and tends to evoke a half-maximal response at a muscarinic receptor occupancy of just 0.206% in the bladder with a minimal difference from exocrine glands, which raises the adverse drug reaction risk. On the contrary, intravesical antimuscarinics are instilled at concentrations 1000-fold higher than the oral maximum plasma concentration and the equilibrium dissociation constant erects a downhill concentration gradient that drives passive diffusion and achieves a mucosal concentration around ten-fold lower than the instilled concentration for a long-lasting occupation of muscarinic receptors in mucosa and sensory nerves. A high local concentration of antimuscarinics in the bladder triggers alternative mechanisms of action and is supposed to engage retrograde transport to nerve cell bodies for neuroplastic changes that underlie a long-lasting therapeutic effect, while an intrinsically lower systemic uptake of the intravesical route lowers the muscarinic receptor occupancy of exocrine glands to lower the adverse drug reaction relative to the oral route. Thus, the traditional pharmacokinetics and pharmacodynamics of oral treatment are upended by intravesical antimuscarinics to generate a dramatic improvement (~ 76%) noted in a meta-analysis of studies enrolling children with neurogenic lower urinary tract symptoms on the primary endpoint of maximum cystometric bladder capacity as well as the secondary endpoints of filling compliance and uninhibited detrusor contractions. The therapeutic success of intravesical multidose oxybutynin solution or oxybutynin entrapped in the polymer for sustained release in the pediatric population bodes well for patients with lower urinary tract symptoms at the other extreme of the age spectrum. Though generally used to predict oral drug absorption, Lipinski’s rule of five can also explain the ten-fold lower systemic uptake from the bladder of positively charged trospium over oxybutynin, a tertiary amine. Chemodenervation by an intradetrusor injection of onabotulinumtoxinA is merited for patients with idiopathic overactive bladder discontinuing oral treatment because of a lack of efficacy. However, age-related peripheral neurodegeneration potentiates the adverse drug reaction risk of urinary retention that motivates the quest of liquid instillation, delivering larger fraction of onabotulinumtoxinA to the mucosa as opposed to muscle by an intradetrusor injection can also probe the neurogenic and myogenic predominance of idiopathic overactive bladder. Overall, the treatment paradigm of lower urinary tract symptoms in older adults should be tailored to individual’s overall health status and the risk tolerance for adverse drug reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Irwin DE, Milsom I, Kopp Z, Abrams P, Artibani W, Herschorn S. Prevalence, severity, and symptom bother of lower urinary tract symptoms among men in the EPIC study: impact of overactive bladder. Eur Urol. 2009;56(1):14–20.

    Article  PubMed  Google Scholar 

  2. Dmochowski RR, Newman DK. Impact of overactive bladder on women in the United States: results of a national survey. Curr Med Res Opin. 2007;23(1):65–76.

    Article  PubMed  Google Scholar 

  3. Pfisterer MH, Griffiths DJ, Rosenberg L, Schaefer W, Resnick NM. Parameters of bladder function in pre-, peri-, and postmenopausal continent women without detrusor overactivity. Neurourol Urodyn. 2007;26(3):356–61.

    Article  PubMed  Google Scholar 

  4. Nishii H. A Review of aging and the lower urinary tract: the future of urology. Int Neurourol J. 2021;25(4):273–84.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ragins AI, Shan J, Thom DH, Subak LL, Brown JS, Van Den Eeden SK. Effects of urinary incontinence, comorbidity and race on quality of life outcomes in women. J Urol. 2008;179(2):651–5 (discussion 5).

    Article  CAS  PubMed  Google Scholar 

  6. Bedretdinova D, Fritel X, Zins M, Ringa V. The effect of urinary incontinence on health-related quality of life: is it similar in men and women? Urology. 2016;91:83–9.

    Article  PubMed  Google Scholar 

  7. Resnick NM. Geriatric incontinence. Urol Clin North Am. 1996;23(1):55–74.

    Article  CAS  PubMed  Google Scholar 

  8. Farage MA, Miller KW, Berardesca E, Maibach HI. Psychosocial and societal burden of incontinence in the aged population: a review. Arch Gynecol Obstet. 2008;277(4):285–90.

    Article  PubMed  Google Scholar 

  9. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5(1):327–96.

    PubMed  PubMed Central  Google Scholar 

  10. Ikeda Y, Zabbarova IV, Birder LA, de Groat WC, McCarthy CJ, Hanna-Mitchell AT, et al. Botulinum neurotoxin serotype A suppresses neurotransmitter release from afferent as well as efferent nerves in the urinary bladder. Eur Urol. 2012;62(6):1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grigoryan B, Kasyan G, Pivazyan L, Pushkar D. Pentosan polysulfate in patients with bladder pain syndrome/interstitial cystitis with Hunner’s lesions or glomerulations: systematic review and meta-analysis. Ther Adv Urol. 2022;14:17562872221102808.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dinh A, Duran C, Hamami K, Afif M, Bonnet F, Donay JL, et al. Hyaluronic acid and chondroitin sulphate treatment for recurrent severe urinary tract infections due to multidrug-resistant Gram-negative bacilli in a patient with multiple sclerosis: case report and literature review. Open Forum Infect Dis. 2022;9(7):ofac245.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zabbarova IV, Ikeda Y, Kozlowski MG, Tyagi P, Birder LA, Chakrabarty B, et al. Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator. J Pathol. 2022;256(4):442–54.

    Article  CAS  PubMed  Google Scholar 

  14. Singh N, Zabbarova I, Ikeda Y, Kanai A, Chermansky C, Yoshimura N, et al. Role of hyperpolarization-activated cyclic nucleotide-gated channels in aging bladder phenotype. Life Sci. 2022;15(289): 120203.

    Article  Google Scholar 

  15. DuBeau CE, Resnick NM. Evaluation of the causes and severity of geriatric incontinence: a critical appraisal. Urol Clin North Am. 1991;18(2):243–56.

    Article  CAS  PubMed  Google Scholar 

  16. Mori K, Noguchi M, Tobu S, Sato F, Mimata H, Tyagi P, et al. Age-related changes in bladder function with altered angiotensin II receptor mechanisms in rats. Neurourol Urodyn. 2016;35(8):908–13.

    Article  CAS  PubMed  Google Scholar 

  17. Mader F, Muller S, Krause L, Springer A, Kernig K, Protzel C, et al. Hyperpolarization-activated cyclic nucleotide-gated non-selective (HCN) ion channels regulate human and murine urinary bladder contractility. Front Physiol. 2018;9:753.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mills IW, Greenland JE, McMurray G, McCoy R, Ho KM, Noble JG, et al. Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J Urol. 2000;163(2):646–51.

    Article  CAS  PubMed  Google Scholar 

  19. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol. 2006;176(4 Pt 1):1673–8.

    Article  CAS  PubMed  Google Scholar 

  20. Abrams P, Andersson KE. Muscarinic receptor antagonists for overactive bladder. BJU Int. 2007;100(5):987–1006.

    Article  CAS  PubMed  Google Scholar 

  21. Modiri AR, Alberts P, Gillberg PG. Effect of muscarinic antagonists on micturition pressure measured by cystometry in normal, conscious rats. Urology. 2002;59(6):963–8.

    Article  PubMed  Google Scholar 

  22. Lua LL, Pathak P, Dandolu V. Comparing anticholinergic persistence and adherence profiles in overactive bladder patients based on gender, obesity, and major anticholinergic agents. Neurourol Urodyn. 2017;36(8):2123–31.

    Article  CAS  PubMed  Google Scholar 

  23. Shamliyan T, Wyman JF, Ramakrishnan R, Sainfort F, Kane RL. Benefits and harms of pharmacologic treatment for urinary incontinence in women: a systematic review. Ann Intern Med. 2012;156(12):861–74 (W301–10).

    Article  PubMed  Google Scholar 

  24. Gopal M, Haynes K, Bellamy SL, Arya LA. Discontinuation rates of anticholinergic medications used for the treatment of lower urinary tract symptoms. Obstet Gynecol. 2008;112(6):1311–8.

    Article  PubMed  Google Scholar 

  25. Kalder M, Pantazis K, Dinas K, Albert US, Heilmaier C, Kostev K. Discontinuation of treatment using anticholinergic medications in patients with urinary incontinence. Obstet Gynecol. 2014;124(4):794–800.

    Article  CAS  PubMed  Google Scholar 

  26. George J, Tharion G, Richar J, Macaden AS, Thomas R, Bhattacharji S. The effectiveness of intravesical oxybutynin, propantheline, and capsaicin in the management of neuropathic bladder following spinal cord injury. Sci World J. 2007;22(7):1683–90.

    Article  Google Scholar 

  27. Davila GW, Daugherty CA, Sanders SW, Transdermal Oxybutynin Study G. A short-term, multicenter, randomized double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol. 2001;166(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  28. Dmochowski RR, Sand PK, Zinner NR, Gittelman MC, Davila GW, Sanders SW, et al. Comparative efficacy and safety of transdermal oxybutynin and oral tolterodine versus placebo in previously treated patients with urge and mixed urinary incontinence. Urology. 2003;62(2):237–42.

    Article  PubMed  Google Scholar 

  29. Goto M, Kato K, Kondo A, Otani T, Takita T, Kobayashi M. Clinical effects of oxybutynin hydrochloride in the treatment of unstable bladder and overactive neurogenic bladder: a long-term clinical trial. Hinyokika Kiyo. 1988;34(3):541–50.

    CAS  PubMed  Google Scholar 

  30. Lehtoranta K, Tainio H, Lukkari-Lax E, Hakonen T, Tammela TL. Pharmacokinetics, efficacy, and safety of intravesical formulation of oxybutynin in patients with detrusor overactivity. Scand J Urol Nephrol. 2002;36(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  31. Buyse G, Waldeck K, Verpoorten C, Bjork H, Casaer P, Andersson KE. Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urol. 1998;160(3 Pt 1):892–6.

    CAS  PubMed  Google Scholar 

  32. Saito M, Watanabe T, Tabuchi F, Otsubo K, Satoh K, Miyagawa I. Urodynamic effects and safety of modified intravesical oxybutynin chloride in patients with neurogenic detrusor overactivity: 3 years experience. Int J Urol. 2004;11(8):592–6.

    Article  PubMed  Google Scholar 

  33. Schroder A, Albrecht U, Schnitker J, Reitz A, Stein R. Efficacy, safety, and tolerability of intravesically administered 0.1% oxybutynin hydrochloride solution in adult patients with neurogenic bladder: a randomized, prospective, controlled multi-center trial. Neurourol Urodyn. 2016;35(5):582–8.

    Article  PubMed  Google Scholar 

  34. Shen SH, Jia X, Peng L, Zeng X, Shen H, Luo DY. Intravesical oxybutynin therapy for patients with neurogenic detrusor overactivity: a systematic review and meta-analysis. Int Urol Nephrol. 2022;54(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  35. Yokoyama O, Ishiura Y, Nakamura Y, Ohkawa M. The use of intravesical oxybutynin hydrochloride in patients with neurogenic bladder managed by intermittent catheterization. Hinyokika Kiyo. 1995;41(7):521–4.

    CAS  PubMed  Google Scholar 

  36. Singh N, Mizoguchi S, Suzuki T, Zabbarova I, Ikeda Y, Kanai A, et al. Excitatory effect of acotiamide on rat and human bladder: implications for underactive bladder treatment. Life Sci. 2020;1(258): 118179.

    Article  Google Scholar 

  37. Sugimoto K, Akiyama T, Matsumura N, Minami T, Uejima S, Uemura H. Efficacy of acotiamide hydrochloride hydrate added to alpha-blocker plus cholinergic drug combination therapy. Int J Urol. 2019;26(8):848–9.

    Article  PubMed  Google Scholar 

  38. Tyagi P, Thomas CA, Yoshimura N, Chancellor MB. Investigations into the presence of functional Beta1, Beta2 and Beta3-adrenoceptors in urothelium and detrusor of human bladder. Int Braz J Urol. 2009;35(1):76–83.

    Article  PubMed  Google Scholar 

  39. Szabo SM, Gooch K, Schermer C, Walker D, Lozano-Ortega G, Rogula B, et al. Association between cumulative anticholinergic burden and falls and fractures in patients with overactive bladder: US-based retrospective cohort study. BMJ Open. 2019;9(5): e026391.

    Article  PubMed Central  Google Scholar 

  40. Tyagi P, Tyagi V. Mirabegron, a beta(3)-adrenoceptor agonist for the potential treatment of urinary frequency, urinary incontinence or urgency associated with overactive bladder. IDrugs. 2010;13(10):713–22.

    CAS  PubMed  Google Scholar 

  41. Tyagi P, Tyagi V, Chancellor M. Mirabegron: a safety review. Expert Opin Drug Saf. 2011;10(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  42. Ness TJ, McNaught J, Clodfelder-Miller B, Su X. Medications used to treat bladder disorders may alter effects of neuromodulation. Neurourol Urodyn. 2020;39(5):1313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamada S, Chimoto J, Shiho M, Okura T, Morikawa K, Wakuda H, et al. Possible involvement of muscarinic receptor blockade in mirabegron therapy for patients with overactive bladder. J Pharmacol Exp Ther. 2021;377(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  44. Aizawa N, Homma Y, Igawa Y. Effects of L-arginine, mirabegron, and oxybutynin on the primary bladder afferent nerve activities synchronized with reflexic, rhythmic bladder contractions in the rat. Neurourol Urodyn. 2015;34(4):368–74.

    Article  CAS  PubMed  Google Scholar 

  45. Kwon J, Lee EJ, Park HR, Cho HJ, Jang JA, Yang H, et al. Continuous administration of mirabegron has advantages in inhibition of central sensitization compared with short-term treatment cessation in a mouse model of overactive bladder. Neurourol Urodyn. 2022;41(6):1355–63.

    Article  CAS  PubMed  Google Scholar 

  46. Xu R, Yang TX, Fang KW, Wang G, Li P. Efficacy, according to urodynamics, of OnabotulinumtoxinA compared with antimuscarinic drugs, for neurogenic detrusor overactivity: a systematic review and network meta-analysis. Sci Rep. 2022;12(1):17905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bschleipfer T, Nandigama R, Moeller S, Illig C, Weidner W, Kummer W. Bladder outlet obstruction influences mRNA expression of cholinergic receptors on sensory neurons in mice. Life Sci. 2012;91(21–22):1077–81.

    Article  CAS  PubMed  Google Scholar 

  48. Nandigama R, Bonitz M, Papadakis T, Schwantes U, Bschleipfer T, Kummer W. Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience. 2010;168(3):842–50.

    Article  CAS  PubMed  Google Scholar 

  49. De Laet K, De Wachter S, Wyndaele JJ. Systemic oxybutynin decreases afferent activity of the pelvic nerve of the rat: new insights into the working mechanism of antimuscarinics. Neurourol Urodyn. 2006;25(2):156–61.

    Article  PubMed  Google Scholar 

  50. Zhang Y, Wang S, Zu S, Zhang C. Transcutaneous electrical nerve stimulation and solifenacin succinate versus solifenacin succinate alone for treatment of overactive bladder syndrome: A double-blind randomized controlled study. PLoS ONE. 2021;16(6): e0253040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang CK, Lin CC, Lin AT. Effectiveness of antimuscarinics and a beta-3 adrenoceptor agonist in patients with overactive bladder in a real-world setting. Sci Rep. 2020;10(1):11355.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yamaguchi O. Antimuscarinics and overactive bladder: other mechanism of action. Neurourol Urodyn. 2010;29(1):112–5.

    PubMed  Google Scholar 

  53. Di Stasi SM, Giannantoni A, Vespasiani G, Navarra P, Capelli G, Massoud R, et al. Intravesical electromotive administration of oxybutynin in patients with detrusor hyperreflexia unresponsive to standard anticholinergic regimens. J Urol. 2001;165(2):491–8.

    Article  PubMed  Google Scholar 

  54. Maruyama S, Tsukada H, Nishiyama S, Kakiuchi T, Fukumoto D, Oku N, et al. In vivo quantitative autoradiographic analysis of brain muscarinic receptor occupancy by antimuscarinic agents for overactive bladder treatment. J Pharmacol Exp Ther. 2008;325(3):774–81.

    Article  CAS  PubMed  Google Scholar 

  55. Yamada S, Kuraoka S, Osano A, Ito Y. Characterization of bladder selectivity of antimuscarinic agents on the basis of in vivo drug-receptor binding. Int Neurourol J. 2012;16(3):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chess-Williams R, Chapple CR, Yamanishi T, Yasuda K, Sellers DJ. The minor population of M3-receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol. 2001;21(5–6):243–8.

    Article  CAS  PubMed  Google Scholar 

  57. Mizushima H, Kinoshita K, Abe K, Ishizuka H, Yamada Y. Pharmacokinetics/pharmacodynamics analysis of the relationship between the in vivo micturition pressure and receptor occupancy of (R)-oxybutynin and its metabolite in rats. Biol Pharm Bull. 2007;30(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  58. Di Stasi SM, Giannantoni A, Navarra P, Capelli G, Storti L, Porena M, et al. Intravesical oxybutynin: mode of action assessed by passive diffusion and electromotive administration with pharmacokinetics of oxybutynin and N-desethyl oxybutynin. J Urol. 2001;166(6):2232–6.

    Article  PubMed  Google Scholar 

  59. Kim Y, Yoshimura N, Masuda H, de Miguel F, Chancellor MB. Antimuscarinic agents exhibit local inhibitory effects on muscarinic receptors in bladder-afferent pathways. Urology. 2005;65(2):238–42.

    Article  PubMed  Google Scholar 

  60. Kajbafzadeh AM, Ahmadi H, Montaser-Kouhsari L, Sabetkish S, Ladi-Seyedian S, Sotoudeh M. Intravesical electromotive administration of botulinum toxin type A in improving the bladder and bowel functions: evidence for novel mechanism of action. J Spinal Cord Med. 2021;44(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  61. Papagiannopoulou D, Vardouli L, Dimitriadis F, Apostolidis A. Retrograde transport of radiolabelled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int. 2016;117(4):697–704.

    Article  CAS  PubMed  Google Scholar 

  62. Bossowska A, Lepiarczyk E, Mazur U, Janikiewicz P, Markiewicz W. Botulinum toxin type A induces changes in the chemical coding of substance P-immunoreactive dorsal root ganglia sensory neurons supplying the porcine urinary bladder. Toxins (Basel). 2015;7(11):4797–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Massad CA, Kogan BA, Trigo-Rocha FE. The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol. 1992;148(2 Pt 2):595–7.

    Article  CAS  PubMed  Google Scholar 

  64. Kullmann FA, Downs TR, Artim DE, Limberg BJ, Shah M, Contract D, et al. Urothelial beta-3 adrenergic receptors in the rat bladder. Neurourol Urodyn. 2011;30(1):144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ouslander JG, Blaustein J, Connor A, Orzeck S, Yong CL. Pharmacokinetics and clinical effects of oxybutynin in geriatric patients. J Urol. 1988;140(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  66. Yarker YE, Goa KL, Fitton A. Oxybutynin. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in detrusor instability. Drugs Aging. 1995;6(3):243–62.

    Article  CAS  PubMed  Google Scholar 

  67. By the American Geriatrics Society Beers Criteria Update Expert P. American Geriatrics Society 2019 updated AGS Beers criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94.

    Article  Google Scholar 

  68. Hughes KM, Lang JC, Lazare R, Gordon D, Stanton SL, Malone-Lee J, et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica. 1992;22(7):859–69.

    Article  CAS  PubMed  Google Scholar 

  69. Welk B, Etaby K, McArthur E, Chou Q. The risk of delirium and falls or fractures with the use of overactive bladder anticholinergic medications. Neurourol Urodyn. 2022;41(1):348–56.

    Article  CAS  PubMed  Google Scholar 

  70. Welk B, Richardson K, Panicker JN. The cognitive effect of anticholinergics for patients with overactive bladder. Nat Rev Urol. 2021;18(11):686–700.

    Article  CAS  PubMed  Google Scholar 

  71. Wuest M, Morgenstern K, Graf EM, Braeter M, Hakenberg OW, Wirth MP, et al. Cholinergic and purinergic responses in isolated human detrusor in relation to age. J Urol. 2005;173(6):2182–9.

    Article  CAS  PubMed  Google Scholar 

  72. Lee MJ, Moon JH, Lee HK, Cho CH, Choi SH, Im WB. Pharmacological characterization of DA-8010, a novel muscarinic receptor antagonist selective for urinary bladder over salivary gland. Eur J Pharmacol. 2019;15(843):240–50.

    Article  Google Scholar 

  73. Brucker BM, King J, Mudd PN Jr, McHale K. Selectivity and Maximum Response of vibegron and mirabegron for beta(3)-adrenergic receptors. Curr Ther Res Clin Exp. 2022;96: 100674.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vaidyanathan S, Ward J, Soni BM, Hughes P, Oo T. Persistent urine leakage around a suprapubic catheter: the experience of a person with chronic tetraplegia. Spinal Cord Ser Cases. 2018;4:31.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Glickman S, Tsokkos N, Shah PJ. Intravesical atropine and suppression of detrusor hypercontractility in the neuropathic bladder: a preliminary study. Paraplegia. 1995;33(1):36–9.

    CAS  PubMed  Google Scholar 

  76. Deaney C, Glickman S, Gluck T, Malone-Lee JG. Intravesical atropine suppression of detrusor hyperreflexia in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;65(6):957–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fader M, Glickman S, Haggar V, Barton R, Brooks R, Malone-Lee J. Intravesical atropine compared to oral oxybutynin for neurogenic detrusor overactivity: a double-blind, randomized crossover trial. J Urol. 2007;177(1):208–13 (discussion 13).

    Article  CAS  PubMed  Google Scholar 

  78. Kao YL, Ou YC, Kuo HC. Bladder dysfunction in older adults: the botulinum toxin option. Drugs Aging. 2022;39(6):401–16.

    Article  CAS  PubMed  Google Scholar 

  79. Sanguedolce F, Meneghetti I, Bevilacqua G, Montano B, Martinez C, Territo A, et al. Intravesical instillation with glycosaminoglycan replacement treatment in patients suffering radiation-induced haemorrhagic cystitis: when and which patients can benefit most from it? Urol Oncol. 2022;40(7):344e19-425.

    Article  Google Scholar 

  80. Mishra NN, Riedl C, Shah S, Pathak N. Intravesical tacrolimus in treatment of intractable interstitial cystitis/bladder pain syndrome: a pilot study. Int J Urol. 2019;26(Suppl. 1):68–72.

    Article  CAS  PubMed  Google Scholar 

  81. Douchamps J, Derenne F, Stockis A, Gangji D, Juvent M, Herchuelz A. The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol. 1988;35(5):515–20.

    Article  CAS  PubMed  Google Scholar 

  82. Kretschmar M, Suleiman AA, Krause P, Albrecht U, Stein R, Rubenwolf P, et al. A population pharmacokinetic model of (R)- and (S-) oxybutynin and its active metabolites after oral and intravesical administration to healthy volunteers. J Clin Pharmacol. 2021;61(7):961–71.

    Article  CAS  PubMed  Google Scholar 

  83. Haferkamp A, Staehler G, Gerner HJ, Dorsam J. Dosage escalation of intravesical oxybutynin in the treatment of neurogenic bladder patients. Spinal Cord. 2000;38(4):250–4.

    Article  CAS  PubMed  Google Scholar 

  84. Fader M, Barton R, Malone-Lee J, Glickman S, Gluck T, Fowler C, et al. New use for an old drug: results of a dose titration study of intra-vesical atropine. Neurourol Urodyn. 2002;21(4):375.

    Google Scholar 

  85. Chancellor MB, Appell RA, Sathyan G, Gupta SK. A comparison of the effects on saliva output of oxybutynin chloride and tolterodine tartrate. Clin Ther. 2001;23(5):753–60.

    Article  CAS  PubMed  Google Scholar 

  86. Madersbacher H, Knoll M. Intravesical application of oxybutynine: mode of action in controlling detrusor hyperreflexia: preliminary results. Eur Urol. 1995;28(4):340–4.

    Article  CAS  PubMed  Google Scholar 

  87. Kaplinsky R, Greenfield S, Wan J, Fera M. Expanded followup of intravesical oxybutynin chloride use in children with neurogenic bladder. J Urol. 1996;156(2 Pt 2):753–6.

    Article  CAS  PubMed  Google Scholar 

  88. Doroshyenko O, Jetter A, Odenthal KP, Fuhr U. Clinical pharmacokinetics of trospium chloride. Clin Pharmacokinet. 2005;44(7):701–20.

    Article  CAS  PubMed  Google Scholar 

  89. Graham G, Gupta S, Aarons L. Determination of an optimal dosage regimen using a Bayesian decision analysis of efficacy and adverse effect data. J Pharmacokinet Pharmacodyn. 2002;29(1):67–88.

    Article  CAS  PubMed  Google Scholar 

  90. Oki T, Kimura R, Saito M, Miyagawa I, Yamada S. Demonstration of bladder selective muscarinic receptor binding by intravesical oxybutynin to treat overactive bladder. J Urol. 2004;172(5 Pt 1):2059–64.

    Article  CAS  PubMed  Google Scholar 

  91. Tyagi P, Chancellor MB, Li Z, De Groat WC, Yoshimura N, Fraser MO, et al. Urodynamic and immunohistochemical evaluation of intravesical capsaicin delivery using thermosensitive hydrogel and liposomes. J Urol. 2004;171(1):483–9.

    Article  CAS  PubMed  Google Scholar 

  92. Yokoyama O, Ishiura Y, Nakamura Y, Ohkawa M. Urodynamic effects of intravesical oxybutynin chloride in conscious rats. J Urol. 1996;155(2):768–71.

    Article  CAS  PubMed  Google Scholar 

  93. Smith SG, Griffith BE, Zaharoff DA. Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry. Math Med Biol. 2019;36(2):139–56.

    Article  PubMed  Google Scholar 

  94. Eickenberg HU, Adcock R. Vascular absorption of intravesical formalin in cyclophosphamide induced haemorrhagic cystitis. Urol Res. 1976;4(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  95. Gao X, Au JL, Badalament RA, Wientjes MG. Bladder tissue uptake of mitomycin C during intravesical therapy is linear with drug concentration in urine. Clin Cancer Res. 1998;4(1):139–43.

    CAS  PubMed  Google Scholar 

  96. Saito T, Hitchens TK, Foley LM, Singh N, Mizoguchi S, Kurobe M, et al. Functional and histologic imaging of urinary bladder wall after exposure to psychological stress and protamine sulfate. Sci Rep. 2021;11(1):19440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh N, Zabbarova I, Ikeda Y, Maranchie J, Chermansky C, Foley L, et al. Virtual measurements of paracellular permeability and chronic inflammation via color coded pixel-wise T1 mapping. Am J Physiol Renal Physiol. 2020;319(3):F506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H. Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol. 1990;143(1):139–42.

    Article  CAS  PubMed  Google Scholar 

  99. Mizunaga M, Miyata M, Kaneko S, Yachiku S, Chiba K. Intravesical instillation of oxybutynin hydrochloride therapy for patients with a neuropathic bladder. Paraplegia. 1994;32(1):25–9.

    CAS  PubMed  Google Scholar 

  100. Amark P, Eksborg S, Juneskans O, Bussman G, Palm C. Pharmacokinetics and effects of intravesical oxybutynin on the paediatric neurogenic bladder. Br J Urol. 1998;82(6):859–64.

    Article  CAS  PubMed  Google Scholar 

  101. Brendler CB, Radebaugh LC, Mohler JL. Topical oxybutynin chloride for relaxation of dysfunctional bladders. J Urol. 1989;141(6):1350–2.

    Article  CAS  PubMed  Google Scholar 

  102. Madersbacher H, Jilg G. Control of detrusor hyperreflexia by the intravesical instillation of oxybutynine hydrochloride. Paraplegia. 1991;29(2):84–90.

    CAS  PubMed  Google Scholar 

  103. Ersay A, Demirtas OC. Intravesical oxybutynin affects bladder permeability. Int Urol Nephrol. 2001;32(3):359–61.

    Article  CAS  PubMed  Google Scholar 

  104. Hohlbrugger G, Frauscher F, Strasser H, Stenzl A, Bartsch G. Evidence for the autoregulation of vesical circulation by intravesical potassium chloride and distension in the normal human bladder. BJU Int. 2000;85(4):412–5.

    Article  CAS  PubMed  Google Scholar 

  105. Miodonski AJ, Litwin JA. Microvascular architecture of the human urinary bladder wall: a corrosion casting study. Anat Rec. 1999;254(3):375–81.

    Article  CAS  PubMed  Google Scholar 

  106. Tyagi P, Mandhani Re A. The paradox of why and how in urology! Indian J Urol. 2022;38:247–8 (Indian J Urol. 2023;39(1):81).

    Article  Google Scholar 

  107. Masters JR, McDermott BJ, Harland S, Bibby MC, Loadman PM. ThioTEPA pharmacokinetics during intravesical chemotherapy: the influence of dose and volume of instillate on systemic uptake and dose rate to the tumour. Cancer Chemother Pharmacol. 1996;38(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  108. Pope AJ, MacRobert AJ, Phillips D, Bown SG. The detection of phthalocyanine fluorescence in normal rat bladder wall using sensitive digital imaging microscopy. Br J Cancer. 1991;64(5):875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sonn GA, Jones SN, Tarin TV, Du CB, Mach KE, Jensen KC, et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol. 2009;182(4):1299–305.

    Article  PubMed  Google Scholar 

  110. Bach P, Wormland RT, Mohring C, Goepel M. Electromotive drug-administration: a pilot study for minimal-invasive treatment of therapy-resistant idiopathic detrusor overactivity. Neurourol Urodyn. 2009;28(3):209–13.

    Article  CAS  PubMed  Google Scholar 

  111. Gauruder-Burmester A, Biskupskie A, Rosahl A, Tunn R. Electromotive drug administration for treatment of therapy-refractory overactive bladder. Int Braz J Urol. 2008;34(6):758–64.

    Article  CAS  PubMed  Google Scholar 

  112. Gurpinar T, Wong HY, Griffith DP. Electromotive administration of intravesical lidocaine in patients with interstitial cystitis. J Endourol. 1996;10(5):443–7.

    Article  CAS  PubMed  Google Scholar 

  113. Di Stasi SM, Giannantoni A, Massoud R, Cortese C, Vespasiani G, Micali F. Electromotive administration of oxybutynin into the human bladder wall. J Urol. 1997;158(1):228–33.

    Article  PubMed  Google Scholar 

  114. Massoud R, Federici G, Casciani S, Di Stasi SM, Fucci G, Giannantoni A, et al. Extraction and determination of oxybutynin in human bladder samples by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1999;734(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  115. Eichel L, Scheidweiler K, Kost J, Shojaie J, Schwarz E, Messing E, et al. Assessment of murine bladder permeability with fluorescein: validation with cyclophosphamide and protamine. Urology. 2001;58(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  116. Elsen S, Lerut E, Van Cleynenbreugel B, van der Aa F, van Poppel H, de Witte PA. Biodistribution of Evans blue in an orthotopic AY-27 rat bladder urothelial cell carcinoma model: implication for the improved diagnosis of non-muscle-invasive bladder cancer (NMIBC) using dye-guided white-light cystoscopy. BJU Int. 2015;116(3):468–77.

    Article  CAS  PubMed  Google Scholar 

  117. Hass MA, Nichol P, Lee L, Levin RM. Estrogen modulates permeability and prostaglandin levels in the rabbit urinary bladder. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2–3):125–9.

    Article  CAS  PubMed  Google Scholar 

  118. Sathyan G, Hu W, Gupta SK. Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol. 2001;41(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  119. Hilson AJ, Lewis CA, Harland SJ. The permeability of the human bladder to water assessed using tritiated water. Contrib Nephrol. 1990;79:41–4.

    Article  CAS  PubMed  Google Scholar 

  120. Volter D, Weisswange V. Xenon-133 resorption in urinary bladder: functional diagnosis of bladder epithelium. Urology. 1976;8(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  121. Shimada H, Yono M, Hojo Y, Hamamura Y, Ootsuki A. Phase I study of KRP-116D, a 50% w/w dimethyl sulfoxide aqueous solution, on the systemic absorption from bladder by intravesical instillation in healthy Japanese subjects. Low Urin Tract Symptoms. 2020;12(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  122. Sugaya K, Ogawa Y, Nishizawa O, de Groat WC. Decrease in intravesical saline volume during isovolumetric cystometry in the rat. Neurourol Urodyn. 1997;16(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  123. Syrigos KN, Khawaja M, Krausz T, Williams G, Epenetos AA. Intravesical administration of radiolabelled tumour-associated monoclonal antibody in bladder cancer. Acta Oncol. 1999;38(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  124. Eldrup J, Thorup J, Nielsen SL, Hald T, Hainau B. Permeability and ultrastructure of human bladder epithelium. Br J Urol. 1983;55(5):488–92.

    Article  CAS  PubMed  Google Scholar 

  125. Tyagi P, Kashyap M, Majima T, Kawamorita N, Yoshizawa T, Yoshimura N. Intravesical liposome therapy for interstitial cystitis. Int J Urol. 2017;24(4):262–71.

    Article  CAS  PubMed  Google Scholar 

  126. Daha LK, Riedl CR, Hohlbrugger G, Knoll M, Engelhardt PF, Pfluger H. Comparative assessment of maximal bladder capacity, 0.9% NaCl versus 0.2 M Kcl, for the diagnosis of interstitial cystitis: a prospective controlled study. J Urol. 2003;170(3):807–9.

    Article  PubMed  Google Scholar 

  127. Pontari MA, Hanno PM, Ruggieri MR. Comparison of bladder blood flow in patients with and without interstitial cystitis. J Urol. 1999;162(2):330–4.

    Article  CAS  PubMed  Google Scholar 

  128. Tyagi P, Kashyap M, Yoshimura N, Chancellor M, Chermansky CJ. Past, present and future of chemodenervation with botulinum toxin in the treatment of overactive bladder. J Urol. 2017;197(4):982–90.

    Article  CAS  PubMed  Google Scholar 

  129. Liberman D, Milhouse O, Johnson-Mitchell M, Siegel SW. Real-world retention rates after intravesical onabotulinumtoxinA for idiopathic overactive bladder. Female Pelvic Med Reconstr Surg. 2018;24(6):404–7.

    Article  PubMed  Google Scholar 

  130. Hinkel A, Pannek J. Transient ischemic attack after electromotive drug administration for chronic non-infectious cystitis: report of two similar cases. Neurourol Urodyn. 2004;23(2):180–2.

    Article  PubMed  Google Scholar 

  131. Gillespie JI, Rouget C, Palea S, Korstanje C. The actions of prolonged exposure to cholinergic agonists on isolated bladder strips from the rat. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(7):737–47.

    Article  CAS  PubMed  Google Scholar 

  132. Sabbir MG, Fernyhough P. Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons. Neuropharmacology. 2018;143:268–81.

    Article  CAS  PubMed  Google Scholar 

  133. De Angelis F, Marinelli S, Fioretti B, Catacuzzeno L, Franciolini F, Pavone F, et al. M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity. J Cell Physiol. 2014;229(6):783–90.

    Article  PubMed  Google Scholar 

  134. Nguyen NM, Song KM, Choi MJ, Ghatak K, Limanjaya A, Kwon MH, et al. Three-dimensional reconstruction of neurovascular network in whole mount preparations and thick-cut transverse sections of mouse urinary bladder. World J Mens Health. 2021;39(1):131–8.

    Article  PubMed  Google Scholar 

  135. Markopoulou S, Vardouli L, Dimitriadis F, Psalla D, Lambropoulos A, Apostolidis A. Effect of bladder injection of onabotulinumtoxinA on the central expression of genes associated with the control of the lower urinary tract: a study in normal rats. Int J Mol Sci. 2022;23(22):14419–14433.

  136. Aizawa N, Ito H, Sugiyama R, Fujimura T, Suzuki M, Fukuhara H, et al. Selective inhibitory effect of imidafenacin and 5-hydroxymethyl tolterodine on capsaicin sensitive C fibers of the primary bladder mechanosensitive afferent nerves in the rat. J Urol. 2015;193(4):1423–32.

    Article  CAS  PubMed  Google Scholar 

  137. Van Meel TD, De Wachter S, Wyndaele JJ. The effect of intravesical oxybutynin on the ice water test and on electrical perception thresholds in patients with neurogenic detrusor overactivity. Neurourol Urodyn. 2010;29(3):391–4.

    Article  PubMed  Google Scholar 

  138. Fratta A, Bordenave J, Boissinot C, Le Grand J, Esquirol C, Radideau E, et al. Development of an intravesial oxybutynin chloride solution: from formulation to quality control. Ann Pharm Fr. 2005;63(2):162–6.

    Article  CAS  PubMed  Google Scholar 

  139. Wan J, Rickman C. The durability of intravesical oxybutynin solutions over time. J Urol. 2007;178(4 Pt 2):1768–70.

    Article  CAS  PubMed  Google Scholar 

  140. Enskat R, Deaney CN, Glickman S. Systemic effects of intravesical atropine sulphate. BJU Int. 2001;87(7):613–6.

    Article  CAS  PubMed  Google Scholar 

  141. Orgen S, Deliktas H, Sahin H, Gedik A, Nergis Y. Histopathologic and urodynamic effects of the anticholinergic drugs oxybutynin, tolterodine, and trospium on the bladder. Low Urin Tract Symptoms. 2017;9(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  142. Walter P, Grosse J, Bihr AM, Kramer G, Schulz HU, Schwantes U, et al. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction: a pilot study. Neurourol Urodyn. 1999;18(5):447–53.

    Article  CAS  PubMed  Google Scholar 

  143. Krause P, Fuhr U, Schnitker J, Albrecht U, Stein R, Rubenwolf P. Pharmacokinetics of intravesical versus oral oxybutynin in healthy adults: results of an open label, randomized, prospective clinical study. J Urol. 2013;190(5):1791–7.

    Article  CAS  PubMed  Google Scholar 

  144. Abebe BT, Weiss M, Modess C, Tadken T, Wegner D, Meyer MJ, et al. Pharmacokinetic drug-drug interactions between trospium chloride and ranitidine substrates of organic cation transporters in healthy human subjects. J Clin Pharmacol. 2020;60(3):312–23.

    Article  CAS  PubMed  Google Scholar 

  145. Baell J, Congreve M, Leeson P, Abad-Zapatero C. Ask the experts: past, present and future of the rule of five. Future Med Chem. 2013;5(7):745–52.

    Article  CAS  PubMed  Google Scholar 

  146. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  PubMed  Google Scholar 

  147. Wientjes MG, Badalament RA, Wang RC, Hassan F, Au JL. Penetration of mitomycin C in human bladder. Cancer Res. 1993;53(14):3314–20.

    CAS  PubMed  Google Scholar 

  148. Mishina T, Watanabe H, Kobayashi T, Maegawa M, Nakao M, Nakagawa S. Absorption of anticancer drugs through bladder epithelium. Urology. 1986;27(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  149. Torti FM, Lum BL. The biology and treatment of superficial bladder cancer. J Clin Oncol. 1984;2(5):505–31.

    Article  CAS  PubMed  Google Scholar 

  150. Bessman JD, Johnson RK, Goldin A. Permeability of normal and cancerous rat bladder to antineoplastic agents. Urology. 1975;6(2):187–93.

    Article  CAS  PubMed  Google Scholar 

  151. Highley MS, van Oosterom AT, Maes RA, De Bruijn EA. Intravesical drug delivery: pharmacokinetic and clinical considerations. Clin Pharmacokinet. 1999;37(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  152. Yamanishi T, Kaga K, Fuse M, Shibata C, Kamai T, Uchiyama T. The role of muscarinic receptor subtypes on carbachol-induced contraction of normal human detrusor and overactive detrusor associated with benign prostatic hyperplasia. J Pharmacol Sci. 2015;128(2):65–70.

    Article  CAS  PubMed  Google Scholar 

  153. Axelsson K, Jozwiak H, Lingardh G, Schonebeck J, Widman B. Blood concentration of lignocaine after application of 2% lignocaine gel in the urethra. Br J Urol. 1983;55(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  154. Stein R, Bogaert G, Dogan HS, Hoen L, Kocvara R, Nijman RJM, et al. EAU/ESPU guidelines on the management of neurogenic bladder in children and adolescent part I diagnostics and conservative treatment. Neurourol Urodyn. 2020;39(1):45–57.

    Article  PubMed  Google Scholar 

  155. Arima Y, Kubo C, Tsujimoto M, Ohtani H, Sawada Y. Improvement of dry mouth by replacing paroxetine with fluvoxamine. Ann Pharmacother. 2005;39(3):567–71.

    Article  PubMed  Google Scholar 

  156. Henry R, Patterson L, Avery N, Tanzola R, Tod D, Hunter D, et al. Absorption of alkalized intravesical lidocaine in normal and inflamed bladders: a simple method for improving bladder anesthesia. J Urol. 2001;165(6 Pt 1):1900–3.

    CAS  PubMed  Google Scholar 

  157. Braverman AS, Ruggieri MR Sr. Hypertrophy changes the muscarinic receptor subtype mediating bladder contraction from M3 toward M2. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R701–8.

    Article  PubMed  Google Scholar 

  158. Ruggieri MR Sr, Braverman AS. Regulation of bladder muscarinic receptor subtypes by experimental pathologies. Auton Autacoid Pharmacol. 2006;26(3):311–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yablonsky F, Savasta M, Feuerstein C, Poirier M. Effects of transection of the spinal cord in the rat: cystometric and autoradiographic studies. J Urol. 1994;152(4):1315–22.

    Article  CAS  PubMed  Google Scholar 

  160. Chermansky CJ, Richter HE, Jacoby K, Titanji W, Jenkins B, Geib T, et al. Intravesical instillation of onabotulinumtoxinA in the treatment of refractory overactive bladder in participants with urinary incontinence. J Urol. 2022;208(4):855–862.

  161. Matin SF, Pierorazio PM, Kleinmann N, Gore JL, Shabsigh A, Hu B, et al. Durability of response to primary chemoablation of low-grade upper tract urothelial carcinoma using UGN-101, a mitomycin-containing reverse thermal gel: OLYMPUS trial final report. J Urol. 2022;207(4):779–88.

    Article  PubMed  Google Scholar 

  162. Tyagi P, Li Z, Chancellor M, De Groat WC, Yoshimura N, Huang L. Sustained intravesical drug delivery using thermosensitive hydrogel. Pharm Res. 2004;21(5):832–7.

    Article  CAS  PubMed  Google Scholar 

  163. Hayashi A, Saito M, Okada S, Hanada T, Watanabe T, Satoh K, et al. Treatment with modified intravesical oxybutynin chloride for neurogenic bladder in children. J Pediatr Urol. 2007;3(6):438–42.

    Article  PubMed  Google Scholar 

  164. Honda M, Kimura Y, Tsounapi P, Hikita K, Saito M, Takenaka A. Long-term efficacy, safety, and tolerability of modified intravesical oxybutynin chloride for neurogenic bladder in children. J Clin Med Res. 2019;11(4):256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Uvin P, Boudes M, Menigoz A, Franken J, Pinto S, Gevaert T, et al. Chronic administration of anticholinergics in rats induces a shift from muscarinic to purinergic transmission in the bladder wall. Eur Urol. 2013;64(3):502–10.

    Article  CAS  PubMed  Google Scholar 

  166. de Groat WC, Yoshimura N. Changes in afferent activity after spinal cord injury. Neurourol Urodyn. 2010;29(1):63–76.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mahawong P, Chaiyaprasithi B, Soontrapa S, Tappayuthapijarn P. A role of intravesical capsaicin instillation in benign prostatic hyperplasia with overactive bladder symptoms: the first reported study in the literature. J Med Assoc Thai. 2007;90(11):2301–9.

    PubMed  Google Scholar 

  168. Phe V, Schneider MP, Peyronnet B, Abo Youssef N, Mordasini L, Chartier-Kastler E, et al. Intravesical vanilloids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis. A report from the Neuro-Urology Promotion Committee of the International Continence Society (ICS). Neurourol Urodyn. 2018;37(1):67–82.

    Article  PubMed  Google Scholar 

  169. Stewart LE, Siddique M, Jacobs KM, Raker CA, Sung VW. Oral phenazopyridine vs intravesical lidocaine for bladder onabotulinumtoxinA analgesia: a randomized controlled trial. Am J Obstet Gynecol. 2022;227(2):308.e1-8.

    Article  PubMed  Google Scholar 

  170. Alvares RA, Araujo ID, Sanches MD. A pilot prospective study to evaluate whether the bladder morphology in cystography and/or urodynamic may help predict the response to botulinum toxin a injection in neurogenic bladder refractory to anticholinergics. BMC Urol. 2014;14(14):66.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang CC, Lee CL, Hwang YT, Kuo HC. Adding mirabegron after intravesical onabotulinumtoxinA injection improves therapeutic effects in patients with refractory overactive bladder. Low Urin Tract Symptoms. 2021;13(4):440–7.

    Article  CAS  PubMed  Google Scholar 

  172. Pereira ESR, Ponte C, Lopes F, Palma Dos Palma J. Alkalinized lidocaine solution as a first-line local anesthesia protocol for intradetrusor injection of onabotulinum toxin A: results from a double-blinded randomized controlled trial. Neurourol Urodyn. 2020;39(8):2471–9.

    Article  Google Scholar 

  173. Rajaganapathy BR, Janicki JJ, Levanovich P, Tyagi P, Hafron J, Chancellor MB, et al. Intravesical liposomal tacrolimus protects against radiation cystitis induced by 3-beam targeted bladder radiation. J Urol. 2015;194(2):578–84.

    Article  CAS  PubMed  Google Scholar 

  174. Edupuganti OP, Ovsepian SV, Wang J, Zurawski TH, Schmidt JJ, Smith L, et al. Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J. 2012;279(14):2555–67.

    Article  CAS  PubMed  Google Scholar 

  175. Lueangarun S, Sermsilp C, Tempark T. Topical botulinum toxin type A liposomal cream for primary axillary hyperhidrosis: a double-blind, randomized, split-site, vehicle-controlled study. Dermatol Surg. 2018;44(8):1094–101.

    Article  CAS  PubMed  Google Scholar 

  176. Chuang YC, Kaufmann JH, Chancellor DD, Chancellor MB, Kuo HC. Bladder instillation of liposome encapsulated onabotulinumtoxina improves overactive bladder symptoms: a prospective, multicenter, double-blind, randomized trial. J Urol. 2014;192(6):1743–9.

    Article  CAS  PubMed  Google Scholar 

  177. Kuo HC, Liu HT, Chuang YC, Birder LA, Chancellor MB. Pilot study of liposome-encapsulated onabotulinumtoxina for patients with overactive bladder: a single-center study. Eur Urol. 2014;65(6):1117–24.

    Article  CAS  PubMed  Google Scholar 

  178. Chuang YC, Tyagi P, Huang CC, Yoshimura N, Wu M, Kaufman J, et al. Urodynamic and immunohistochemical evaluation of intravesical botulinum toxin A delivery using liposomes. J Urol. 2009;182(2):786–92.

    Article  CAS  PubMed  Google Scholar 

  179. Liu HT, Chen SH, Chancellor MB, Kuo HC. Presence of cleaved synaptosomal-associated protein-25 and decrease of purinergic receptors P2X3 in the bladder urothelium influence efficacy of botulinum toxin treatment for overactive bladder syndrome. PLoS ONE. 2015;10(8): e0134803.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Malamitsi J, Zorzos J, Varvarigou AD, Archimandritis S, Dassiou C, Skarlos DV, et al. Immunolocalization of transitional cell carcinoma of the bladder with intravesically administered technetium-99m labelled HMFG1 monoclonal antibody. Eur J Nucl Med. 1995;22(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  181. Bamias A, Keane P, Krausz T, Williams G, Epenetos AA. Intravesical administration of radiolabeled antitumor monoclonal antibody in bladder carcinoma. Cancer Res. 1991;51(2):724–8.

    CAS  PubMed  Google Scholar 

  182. Korosec P, Jezernik K. Early cellular and ultrastructural response of the mouse urinary bladder urothelium to ischemia. Virchows Arch. 2000;436(4):377–83.

    Article  CAS  PubMed  Google Scholar 

  183. Stav K, Vinshtok Y, Jeshurun M, Ivgy-May N, Gerassi T, Zisman A. Pilot study evaluating safety and feasibility of intravesical instillation of botulinum toxin in hydrogel-based slow release delivery system in PBS/IC patients. J Urol. 2015;193(4S).

  184. Krhut J, Navratilova M, Sykora R, Jurakova M, Gartner M, Mika D, et al. Intravesical instillation of onabotulinum toxin A embedded in inert hydrogel in the treatment of idiopathic overactive bladder: a double-blind randomized pilot study. Scand J Urol. 2016;50(3):200–5.

    Article  CAS  PubMed  Google Scholar 

  185. Lietzow MA, Gielow ET, Le D, Zhang J, Verhagen MF. Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J. 2008;27(7–8):420–5.

    Article  CAS  PubMed  Google Scholar 

  186. Cliff AM, Heatherwick B, Scoble J, Parr NJ. The effect of fasting or desmopressin before treatment on the concentration of mitomycin C during intravesical administration. BJU Int. 2000;86(6):644–7.

    Article  CAS  PubMed  Google Scholar 

  187. Petrou SP, Parker AS, Crook JE, Rogers A, Metz-Kudashick D, Thiel DD. Botulinum a toxin/dimethyl sulfoxide bladder instillations for women with refractory idiopathic detrusor overactivity: a phase 1/2 study. Mayo Clin Proc. 2009;84(8):702–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Reynolds WS, Suskind AM, Anger JT, Brucker BM, Cameron AP, Chung DE, et al. Incomplete bladder emptying and urinary tract infections after botulinum toxin injection for overactive bladder: Multi-institutional collaboration from the SUFU research network. Neurourol Urodyn. 2022;41(2):662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kennelly M, Green L, Alvandi N, Wehbe S, Smith JJ 3rd, MacDiarmid S, et al. Clean intermittent catheterization rates after initial and subsequent treatments with onabotulinumtoxinA for non-neurogenic overactive bladder in real-world clinical settings. Curr Med Res Opin. 2018;34(10):1771–6.

    Article  CAS  PubMed  Google Scholar 

  190. Miotla P, Cartwright R, Skorupska K, Bogusiewicz M, Markut-Miotla E, Futyma K, et al. Urinary retention in female OAB after intravesical Botox injection: who is really at risk? Int Urogynecol J. 2017;28(6):845–50.

    Article  PubMed  Google Scholar 

  191. Chermansky CJ, Kadow BT, Kashyap M, Tyagi P. MicroRNAs as potential biomarkers to predict the risk of urinary retention following intradetrusor onabotulinumtoxin-A injection. Neurourol Urodyn. 2018;37(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  192. Tornic J, Sartori AM, Gajewski JB, Cox A, Schneider MP, Youssef NA, et al. Catheterization for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review. A report from the Neuro-Urology Promotion Committee of the International Continence Society (ICS). Neurourol Urodyn. 2018;37(8):2315–22.

    Article  PubMed  Google Scholar 

  193. Gilpin SA, Gilpin CJ, Dixon JS, Gosling JA, Kirby RS. The effect of age on the autonomic innervation of the urinary bladder. Br J Urol. 1986;58(4):378–81.

    Article  CAS  PubMed  Google Scholar 

  194. Chen SF, Jiang YH, Kuo HC. Urinary biomarkers in patients with detrusor underactivity with and without bladder function recovery. Int Urol Nephrol. 2017;49(10):1763–70.

    Article  CAS  PubMed  Google Scholar 

  195. Smith PP, Chalmers DJ, Feinn RS. Does defective volume sensation contribute to detrusor underactivity? Neurourol Urodyn. 2015;34(8):752–6.

    Article  PubMed  Google Scholar 

  196. Bender RA, Brewster A, Santoro B, Ludwig A, Hofmann F, Biel M, et al. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1–4 suggests evolving roles in the developing rat hippocampus. Neuroscience. 2001;106(4):689–98.

    Article  CAS  PubMed  Google Scholar 

  197. Vasilyev DV, Barish ME. Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons. J Neurosci. 2002;22(20):8992–9004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yu Y, Daugherty SL, de Groat WC. Effects of nicotinic receptor agonists on bladder afferent nerve activity in an in vitro bladder-pelvic nerve preparation. Brain Res. 2016;15(1637):91–101.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Scott Glickman for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Tyagi.

Ethics declarations

Funding

This work was partly supported by National Institutes of Health Grants: R44DK108397, CA251341, and CA263243.

Conflicts of Interest/Competing Interests

Michael Chancellor and Jonathan Kaufman are board members of Lipella Pharmaceuticals. Pradeep Tyagi is a consultant for Vensica Therapeutics and Uropharma.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

AG and ST wrote the initial draft and performed the literature search; CC, AK, and JB offered valuable suggestions to modify the draft; MC, JK, and NY edited and help secure funding; PT was responsible for the overall theme, direction, and formatting of the submitted work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, A., Tyagi, S., Chermansky, C. et al. Treating Lower Urinary Tract Symptoms in Older Adults: Intravesical Options. Drugs Aging 40, 241–261 (2023). https://doi.org/10.1007/s40266-023-01009-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-023-01009-5

Navigation