Skip to main content
Log in

Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    CAS  PubMed  Google Scholar 

  2. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. ESC Committee for Practice Guidelines (CPG): 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.

    PubMed  Google Scholar 

  3. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12:547–58.

    CAS  PubMed  Google Scholar 

  4. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:1457–67.

    CAS  PubMed  Google Scholar 

  5. Curigliano G, Cardinale D, Dent S, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66:309–25.

    PubMed  Google Scholar 

  6. Tamargo J, Caballero R, Delpón E. Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf. 2015;38:129–52.

    CAS  PubMed  Google Scholar 

  7. Alexandre J, Moslehi JJ, Bersell KR, Funck-Brentano C, Roden DM, Salem JE. Anticancer drug-induced cardiac rhythm disorders: current knowledge and basic underlying mechanisms. Pharmacol Ther. 2018;189:89–103.

    CAS  PubMed  Google Scholar 

  8. Minoia C, Giannoccaro M, Iacobazzi A, Santini D, Silvestris N, Fioretti A, et al. Antineoplastic drug-induced bradyarrhythmias. Expert Opin Drug Saf. 2012;11:739–51.

    CAS  PubMed  Google Scholar 

  9. Roden DM. Predicting drug-induced QT prolongation and torsades de pointes. J Physiol. 2016;594:2459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. National Institutes of Health. Pulse. https://medlineplus.gov/ency/article/003399.htm. Accessed 18 Dec 2017.

  11. Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019;74:e51-156.

    PubMed  Google Scholar 

  12. Jensen PN, Gronroos NN, Chen LY, Folsom AR, deFilippi C, Heckbert SR, et al. Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol. 2014;64:531–8.

    PubMed  PubMed Central  Google Scholar 

  13. Ho SY, Sánchez-Quintana D. Anatomy and pathology of the sinus node. J Interv Card Electrophysiol. 2016;46:3–8.

    PubMed  Google Scholar 

  14. Choudhury M, Boyett MR, Morris GM. Biology of the sinus node and its disease. Arrhythm Electrophysiol Rev. 2015;4:28–34.

    PubMed  PubMed Central  Google Scholar 

  15. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Monfredi O, Maltsev VA, Lakatta EG. Modern concepts concerning the origin of the heartbeat. Physiology (Bethesda). 2013;28:74–92.

    CAS  Google Scholar 

  17. Alghamdi AM, Boyett MR, Hancox JC, Zhang H. Cardiac pacemaker dysfunction arising from different studies of ion channel remodeling in the aging rat heart. Front Physiol. 2020;11:546508.

    PubMed  PubMed Central  Google Scholar 

  18. Peters CH, Sharpe EJ, Proenza C. Cardiac pacemaker activity and aging. Annu Rev Physiol. 2020;82:21–43.

    CAS  PubMed  Google Scholar 

  19. Chow GV, Marine JE, Fleg JL. Epidemiology of arrhythmias and conduction disorders in older adults. Clin Geriatr Med. 2012;28:539–53.

    PubMed  PubMed Central  Google Scholar 

  20. Mangrum JM, DiMarco JP. The evaluation and management of bradycardia. N Engl J Med. 2000;342:703–9.

    CAS  PubMed  Google Scholar 

  21. Menozzi C, Brignole M, Alboni P, Boni L, Paparella N, Gaggioli G, et al. The natural course of untreated sick sinus syndrome and identification of the variables predictive of unfavorable outcome. Am J Cardiol. 1998;82:1205–9.

    CAS  PubMed  Google Scholar 

  22. Clark TE, Edom N, Larson J, Lindsey LJ. Thalomid (Thalidomide) capsules: a review of the first 18 months of spontaneous postmarketing adverse event surveillance, including off-label prescribing. Drug Saf. 2001;24:87–117.

    CAS  PubMed  Google Scholar 

  23. Kaur A, Yu SS, Lee AJ, Chiao TB. Thalidomide-induced sinus bradycardia. Ann Pharmacother. 2003;37:1040–3.

    PubMed  Google Scholar 

  24. Juliusson G, Celsing F, Turesson I, Lenhoff S, Adriansson M. Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma. Br J Haematol. 2000;109:89–96.

    CAS  PubMed  Google Scholar 

  25. Hus M, Dmoszynska A, Soroka-Wojtaszko M, Jawniak D, Legiec W, Ciepnuch H, et al. Thalidomide treatment of resistant or relapsed multiple myeloma patients. Haematologica. 2001;86:404–8.

    CAS  PubMed  Google Scholar 

  26. Kneller A, Raanani P, Hardan I, Avigdor A, Levi I, Berkowicz M, et al. Therapy with thalidomide in refractory multiple myeloma patients—the revival of an old drug. Br J Haematol. 2000;108:391–3.

    CAS  PubMed  Google Scholar 

  27. Ghobrial IM, Rajkumar SV. Management of thalidomide toxicity. J Support Oncol. 2003;1:194–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mileshkin L, Biagi JJ, Mitchell P, Underhill C, Grigg A, Bell R, et al. Multicenter phase 2 trial of thalidomide in relapsed/refractory multiple myeloma: adverse prognostic impact of advanced age. Blood. 2003;102:69–77.

    CAS  PubMed  Google Scholar 

  29. Rajkumar SV, Gertz MA, Lacy MQ, Dispenzieri A, Fonseca R, Geyer SM, et al. Thalidomide as initial therapy for early-stage myeloma. Leukemia. 2003;17:775–9.

    CAS  PubMed  Google Scholar 

  30. Dimopoulos MA, Eleutherakis-Papaiakovou V. Adverse effects of thalidomide administration in patients with neoplastic diseases. Am J Med. 2004;117:508–15.

    CAS  PubMed  Google Scholar 

  31. Fahdi IE, Gaddam V, Saucedo JF, Kishan CV, Vyas K, Deneke MG, et al. Bradycardia during therapy for multiple myeloma with thalidomide. Am J Cardiol. 2004;93:1052–5.

    CAS  PubMed  Google Scholar 

  32. Schütt P, Ebeling P, Buttkereit U, Brandhorst D, Opalka B, Poser M, et al. Thalidomide in combination with dexamethasone for pretreated patients with multiple myeloma: serum level of soluble interleukin-2 receptor as a predictive factor for response rate and for survival. Ann Hematol. 2005;84:594–600.

    PubMed  Google Scholar 

  33. de la Cruz IL, Aguayo-González A, López-Karpovitch X. Thalidomide-associated bradycardia in patients with hematologic diseases: a single institution experience. Rev Invest Clin. 2006;58:424–31.

    Google Scholar 

  34. Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med. 2006;354:1021–30.

    CAS  PubMed  Google Scholar 

  35. Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR, Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24:431–6.

    CAS  PubMed  Google Scholar 

  36. Sanborn SL, Cooney MM, Dowlati A, Brell JM, Krishnamurthi S, Gibbons J, et al. Phase I trial of docetaxel and thalidomide: a regimen based on metronomic therapeutic principles. Invest New Drugs. 2008;26:355–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arboscello E, Bellodi A, Passalia C, Spallarossa P, Balleari E, Ponassi I, et al. Thalidomide-induced cardiotoxicity in multiple myeloma patients: an underestimated but clinically relevant issue. J Clin Oncol. 2010;28:e18544.

    Google Scholar 

  38. Zamagni E, Petrucci A, Tosi P, Tacchetti P, Perrone G, Brioli A, et al. Long-term results of thalidomide and dexamethasone (thal-dex) as therapy of first relapse in multiple myeloma. Ann Hematol. 2012;91:419–26.

    CAS  PubMed  Google Scholar 

  39. Palumbo A, Facon T, Sonneveld P, Bladè J, Offidani M, Gay F, et al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood. 2008;111:3968–77.

    CAS  PubMed  Google Scholar 

  40. Amato RJ, Sarao H. A phase I study of paclitaxel/doxorubicin/ thalidomide in patients with androgen- independent prostate cancer. Clin Genitourin Cancer. 2006;4:281–6.

    CAS  PubMed  Google Scholar 

  41. Revlimid® [lenalidomide] capsules. https://www.ema.europa.eu/en/documents/product-information/lenalidomide-accord-epar-product-information_en.pdf. Accessed 10 Apr 2021.

  42. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993;177:1675–80.

    CAS  PubMed  Google Scholar 

  43. Emch GS, Hermann GE, Rogers RC. Tumor necrosis factor-alpha inhibits physiologically identified dorsal motor nucleus neurons in vivo. Brain Res. 2002;951:311–5.

    CAS  PubMed  Google Scholar 

  44. Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B. Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res. 1997;81:60–8.

    CAS  PubMed  Google Scholar 

  45. Tamilarasan KP, Kolluru GK, Rajaram M, Indhumathy M, Saranya R, Chatterjee S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol. 2006;7:17.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Khalil A, Tanos R, El-Hachem N, Kurban M, Bouvagnet P, Bitar F, et al. A HAND to TBX5 explains the link between thalidomide and cardiac diseases. Sci Rep. 2017;7:1416.

    PubMed  PubMed Central  Google Scholar 

  47. Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, ITACA Consortium Investigators, et al. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res. 2021. https://doi.org/10.1093/cvr/cvab045.

    Article  Google Scholar 

  48. Cazin B, Gorin NC, Laporte JP, Gallet B, Douay L, Lopez M, et al. Cardiac complications after bone marrow transplantation. A report on a series of 63 consecutive transplantations. Cancer. 1986;57:2061–9.

    CAS  PubMed  Google Scholar 

  49. Ando M, Yokozawa T, Sawada J, Takaue Y, Togitani K, Kawahigashi N, et al. Cardiac conduction abnormalities in patients with breast cancer undergoing high-dose chemotherapy and stem cell transplantation. Bone Marrow Transplant. 2000;25:185–9.

    CAS  PubMed  Google Scholar 

  50. Melphalan hydrochloride and bradycardia (expanded source). https://www.ehealthme.com/extended/ds/melphalan-hydrochloride/bradycardia/. Accessed 10 Apr 2021.

  51. Berenson JR, Boccia R, Siegel D, Bozdech M, Bessudo A, Stadtmauer E, et al. Efficacy and safety of melphalan, arsenic trioxide and ascorbic acid combination therapy in patients with relapsed or refractory multiple myeloma: a prospective, multicentre, phase II, single-arm study. Br J Haematol. 2006;135:174–83.

    CAS  PubMed  Google Scholar 

  52. Morandi P, Ruffini PA, Benvenuto GM, Raimondi R, Fosser V. Cardiac toxicity of high-dose chemotherapy. Bone Marrow Transplant. 2005;35:323–34.

    CAS  PubMed  Google Scholar 

  53. Yavas O, Aytemir K, Celik I. The prevalence of silent arrhythmia in patients receiving cisplatin-based chemotherapy. Turk J Cancer. 2008;38:12–5.

    Google Scholar 

  54. Cisplatin and bradycardia—a phase IV clinical study from FDA data. http://www.ehealthme.com/ds/cisplatin/bradycardia. Accessed 10 Apr 2021.

  55. Schlaeffer F, Tovi F, Leiberman A. Cisplatin-induced bradycardia. Drug Intell Clin Pharm. 1983;17:899–901.

    CAS  PubMed  Google Scholar 

  56. Cabuk D, Demir MV, Yaylaci S, Mehmet V, Ali T. Recurrent bradycardia episodes induced by cisplatin infusion. Sakarya Med J. 2013;3:218–20.

    Google Scholar 

  57. Oun R, Rowan E. Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol. 2017;811:125–8.

    CAS  PubMed  Google Scholar 

  58. Roe AT, Frisk M, Louch WE. Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des. 2015;21:431–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Misic MM, Jakovljevic VL, Bugarcic ZD, Zivkovic VI, Srejovic IM, Barudzic NS, et al. Platinum complexes-induced cardiotoxicity of isolated, perfused rat heart: comparison of Pt(II) and Pt(IV) analogues versus cisplatin. Cardiovasc Toxicol. 2015;15:261–8.

    CAS  PubMed  Google Scholar 

  60. Schlumbrecht MP, Hehr K. Cisplatin-induced bradycardia and the importance of the QT interval. J Oncol Pharm Pract. 2015;21:157–60.

    PubMed  Google Scholar 

  61. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA. 1989;86:6753–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res. 1990;67:753–63.

    CAS  PubMed  Google Scholar 

  63. Krown KA, Yasui K, Brooker MJ, Dubin AE, Nguyen C, Harris GL, et al. TNF α receptor expression in rat cardiac myocytes: TNF-α inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Lett. 1995;376:24–30.

    CAS  PubMed  Google Scholar 

  64. London B, Baker LC, Lee JS, Shusterman V, Choi B-R, Kubota T, et al. Calcium-dependent arrhythmias in transgenic mice with heart failure. Am J Physiol Heart Circ Physiol. 2003;284:H431–41.

    CAS  PubMed  Google Scholar 

  65. Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016;91:114–22.

    CAS  PubMed  Google Scholar 

  66. Dyhl-Polk A, Vaage-Nilsen M, Schou M, Vistisen KK, Lund CM, Kümler T, et al. Incidence and risk markers of 5-fluorouracil and capecitabine cardiotoxicity in patients with colorectal cancer. Acta Oncol. 2020;59:475–83.

    CAS  PubMed  Google Scholar 

  67. Koca D, Salman T, Unek IT, Oztop I, Ellidokuz H, Eren M, et al. Clinical and electrocardiography changes in patients treated with capecitabine. Chemotherapy. 2011;57:381–7.

    CAS  PubMed  Google Scholar 

  68. Romani C, Pettinau M, Murru R, Angelucci E. Sinusal bradycardia after receiving intermediate or high dose cytarabine: four cases from a single institution. Eur J Cancer Care (Engl). 2009;18:320–1.

    CAS  Google Scholar 

  69. Talapatra K, Rajesh I, Rajesh B, Selvamani B, Subhashini J. Transient asymptomatic bradycardia in patients on infusional 5-fluorouracil. J Cancer Res Ther. 2007;3:169–71.

    CAS  PubMed  Google Scholar 

  70. Yilmaz U, Oztop I, Ciloglu A, Okan T, Tekin U, Yaren A, et al. 5-fluorouracil increases the number and complexity of premature complexes in the heart: a prospective study using ambulatory ECG monitoring. Int J Clin Pract. 2007;61:795–801.

    CAS  PubMed  Google Scholar 

  71. Khan MA, Masood N, Husain N, Ahmad B, Aziz T, Naeem A. A retrospective study of cardiotoxicities induced by 5-fluouracil (5-FU) and 5-FU based chemotherapy regimens in Pakistani adult cancer patients at Shaukat Khanum Memorial Cancer Hospital & Research Center. J Pak Med Assoc. 2012;62:430–4.

    PubMed  Google Scholar 

  72. Hafeez I, Lone A, Beig JR, Alai MS, Dar I, Tramboo N. Effect of 5-fluorouracil on sinoatrial node and conduction system of heart. Int J Adv Med. 2017;4:184–7.

    Google Scholar 

  73. Stamatopoulos K, Kanellopoulou G, Vaiopoulos G, Stamatellos G, Yataganas X. Evidence for sinoatrial blockade associated with high dose cytarabine therapy. Leuk Res. 1998;22:759–61.

    CAS  PubMed  Google Scholar 

  74. Chung-Lo W, Hsieh CY, Chiu CF, Bai LY. Fludarabine-induced bradycardia in a patient with refractory leukemia. Ann Saudi Med. 2010;30:246–7.

    PubMed  PubMed Central  Google Scholar 

  75. Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134:75–82.

    CAS  PubMed  Google Scholar 

  76. Perez-Verdia A, Angulo F, Hardwicke FL, Nugent KM. Acute cardiac toxicity associated with high-dose intravenous methotrexate therapy: case report and review of the literature. Pharmacotherapy. 2005;25:1271–6.

    PubMed  Google Scholar 

  77. Tsibiribi P, Bui-Xuan C, Bui-Xuan B, Lombard-Bohas C, Duperret S, Belkhiria M, et al. Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum Exp Toxicol. 2006;25:305–9.

    CAS  PubMed  Google Scholar 

  78. Alter P, Herzum M, Soufi M, Schaefer JR, Maisch B. Cardiotoxicity of 5-fluorouracil. Cardiovasc Hematol Agents Med Chem. 2006;4:1–5.

    CAS  PubMed  Google Scholar 

  79. Porta C, Moroni M, Ferrari S, Nastasi G. Endothelin-1 and 5-fluorouracil-induced cardiotoxicity. Neoplasma. 1998;45:81–2.

    CAS  PubMed  Google Scholar 

  80. Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016;371:58–66.

    CAS  PubMed  Google Scholar 

  81. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39:974–84.

    CAS  PubMed  Google Scholar 

  82. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8:191–202.

    CAS  PubMed  Google Scholar 

  83. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005;23:7685–96.

    CAS  PubMed  Google Scholar 

  84. Backway KL, McCulloch EA, Chow S, Hedley DW. Relationships between the mitochondrial permeability transition and oxidative stress during ara-C toxicity. Cancer Res. 1997;57:2446–51.

    CAS  PubMed  Google Scholar 

  85. Spremulli EN, Cummings FJ, Crabtree GW, LaBresh K, Jordan M, Calabresi P. Hemodynamic effects of potentially useful antineoplastic agents. J Natl Cancer Inst. 1983;70:499–504.

    CAS  PubMed  Google Scholar 

  86. Phillip CC. Fludarabine and bradycardia in recipients of allogeneic stem cell transplant: a case series. Egypt J Pharmacol. 2015;40:104–6.

    Google Scholar 

  87. Horacek JM, Jakl M, Horackova J, Pudil R, Jebavy L, Maly J. Assessment of anthracycline-induced cardiotoxicity with electrocardiography. Exp Oncol. 2009;31:115–7.

    CAS  PubMed  Google Scholar 

  88. von Hoff DD, Rozencweig M, Layard M, Slavik M, Muggia FM. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med. 1977;62:200–8.

    Google Scholar 

  89. Dang C, Fornier M, Sugarman S, Troso-Sandoval T, Lake D, D’Andrea G, et al. The safety of dose-dense doxorubicin and cyclophosphamide followed by paclitaxel with trastuzumab in HER-2/neu overexpressed/amplified breast cancer. DJ Clin Oncol. 2008;26:1216–22.

    CAS  Google Scholar 

  90. Perez EA, Suman VJ, Davidson NE, Sledge GW, Kaufman PA, Hudis CA, et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J Clin Oncol. 2008;26:1231–8.

    CAS  PubMed  Google Scholar 

  91. Usnarska-Zubkiewicz L, Sciborski R, Nowosad H, Grzelak H, Kotlarek-Haus S. Effect of epirubicin on the heart conduction system in patients with Hodgkin’s disease. Pol Arch Med Wewn. 1992;87:173–82.

    CAS  PubMed  Google Scholar 

  92. Umemoto M, Kawasaki H, Azuma E, Komada Y, Ito M, Sakurai M. Bradycardia due to mitoxantrone exacerbated by previous anthracycline therapy. Am J Hematol. 1996;52:327–8.

    CAS  PubMed  Google Scholar 

  93. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31:63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Viglione PN, Praprotnik A, Politi PM, Pinto JE. Comparison of acute effects of mitoxantrone and doxorubicin in guinea-pig atria. Gen Pharmacol. 1992;23:873–9.

    CAS  PubMed  Google Scholar 

  95. Viglione PN, Praprotnik A, Pinto JE. In vitro evaluation of acute effects of mitoxantrone (Novantrone) in rat and guinea pig atria. Pharmacol Toxicol. 1993;72:208–12.

    CAS  PubMed  Google Scholar 

  96. Binah O, Cohen IS, Rosen MR. The effects of adriamycin on normal and ouabain-toxic canine Purkinje and ventricular muscle fibers. Circ Res. 1983;53:655–62.

    CAS  PubMed  Google Scholar 

  97. Milberg P, Fleischer D, Stypmann J, Osada N, Mönnig G, Engelen MA, et al. Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers. Basic Res Cardiol. 2007;102:42–51.

    CAS  PubMed  Google Scholar 

  98. Nagami K, Yoshikawa T, Suzuki M, Wainai Y, Anzai T, Handa S. Abnormal β-adrenergic transmembrane signaling in rabbit with adriamycin-induced cardiomyopathy. Jpn Circ J. 1997;61:249–55.

    CAS  PubMed  Google Scholar 

  99. Uno Y, Minatoguchi S, Imai Y, Koshiji M, Kakami M, Yokoyama H, et al. Modulation of noradrenaline release via activation of presynaptic β-adrenoceptors in rabbits with adriamycin-induced cardiomyopathy. Jpn Circ J. 1993;57:426–33.

    CAS  PubMed  Google Scholar 

  100. Hageman GR, Urthaler F, Isobe JH, James TN. Chronotropic and dromotropic effects of histamine on the canine heart. Chest. 1979;75:597–604.

    CAS  PubMed  Google Scholar 

  101. Bristow MR, Sageman WS, Scott RH, Billingham ME, Bowden RE, Kernoff RS, et al. Acute and chronic cardiovascular effects of doxorubicin in the dog: the cardiovascular pharmacology of drug-induced histamine release. J Cardiovasc Pharmacol. 1980;2:487–515.

    CAS  PubMed  Google Scholar 

  102. Nault MA, Milne B, Parlow JL. Effects of the Selective H1 and H2 histamine receptor antagonists loratadine and ranitidine on autonomic control of the heart. Anesthesiology. 2002;96:336–41.

    CAS  PubMed  Google Scholar 

  103. Morrey C, Estephan R, Abbott GW, Levi R. Cardioprotective effect of histamine H3-receptor activation: pivotal role of G beta gamma-dependent inhibition of voltage-operated Ca2+ channels. J Pharmacol Exp Ther. 2008;326:871–8.

    CAS  PubMed  Google Scholar 

  104. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR. Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol. 2011;67:1381–8.

    CAS  PubMed  Google Scholar 

  105. Venditti P, Balestrieri M, De Leo T, Di Meo S. Free radical involvement in doxorubicin-induced electrophysiological alterations in rat papillary muscle fibres. Cardiovasc Res. 1998;38:695–702.

    CAS  PubMed  Google Scholar 

  106. Simunek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–71.

    CAS  PubMed  Google Scholar 

  107. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:e000665.

    PubMed  PubMed Central  Google Scholar 

  108. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA. 1988;85:3585–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    PubMed  Google Scholar 

  110. Smith MR, Klotz L, Persson BE, Olesen TK, Wilde AA. Cardiovascular safety of degarelix: results from a 12-month, comparative, randomized, open label, parallel group phase III trial in patients with prostate cancer. J Urol. 2010;184:2313–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fareston®. Summary of Product Characteristics. https://www.ema.europa.eu/en/documents/product-information/fareston-epar-product-information_en.pdf. Accessed 10 Apr 2021.

  112. Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:1579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55.

    PubMed  PubMed Central  Google Scholar 

  114. Horn L, Dahlberg SE, Sandler AB, Dowlati A, Moore DF, Murren JR, et al. Phase II study of cisplatin plus etoposide and bevacizumab for previously untreated, extensive-stage small-cell lung cancer: Eastern Cooperative Oncology Group Study E3501. J Clin Oncol. 2009;27:6006–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cui F, Chen JZ, Wan C, Chen B, Luo RC, Zheng H. Clinical research of bevacizumab in combination with irinotecan, fluorouracil and leucovorin for advanced metastatic colorectal cancer. Chin J Gastrointest Surg. 2009;4:374–7.

    Google Scholar 

  116. Ghiaseddin A, Reardon D, Massey W, Mannerino A, Lipp ES, Herndon JE 2nd, et al. Phase II study of bevacizumab and vorinostat for patients with Recurrent World Health Organization Grade 4 malignant glioma. Oncologist. 2018;23:157-e21.

    CAS  PubMed  Google Scholar 

  117. Foran JM, Rohatiner AZ, Cunningham D, Popescu RA, Solal-Celigny P, Ghielmini M, et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Oncol. 2000;18:317–24.

    CAS  PubMed  Google Scholar 

  118. Pivot X, Verma S, Fallowfield L, Müller V, Lichinitser M, Jenkins V, PrefHer Study Group, et al. Efficacy and safety of subcutaneous trastuzumab and intravenous trastuzumab as part of adjuvant therapy for HER2-positive early breast cancer: final analysis of the randomised, two-cohort PrefHer study. Eur J Cancer. 2017;86:82–90.

    CAS  PubMed  Google Scholar 

  119. Chen ZI, Ai DI. Cardiotoxicity associated with targeted cancer therapies. Mol Clin Oncol. 2016;4:675–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Chino H, Amano Y, Yamauchi Y, Matsuda J, Takeda N, Tanaka G, et al. Cardiogenic syncope possibly related to bevacizumab-containing combination chemotherapy for advanced non-small cell lung cancer. J Thorac Dis. 2016;8:2646–50.

    PubMed  PubMed Central  Google Scholar 

  121. Mohan N, Jiang J, Dokmanovic M, Wu WJ. Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. Antib Ther. 2018;1:13–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim HG, Lee CK, Cho SM, Whang K, Cha BH, Shin JH, et al. Neuregulin 1 up-regulates the expression of nicotinic acetylcholine receptors through the ErbB2/ErbB3-PI3K-MAPK signaling cascade in adult autonomic ganglion neurons. J Neurochem. 2013;124:502–13.

    CAS  PubMed  Google Scholar 

  123. Okoshi K, Nakayama M, Yan X, Okoshi MP, Schuldt AJ, Marchionni MA, et al. Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of betaadrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation. 2004;110:713–7.

    CAS  PubMed  Google Scholar 

  124. Poterucha JT, Westberg M, Nerheim P, Lovell JP. Rituximab-induced polymorphic ventricular tachycardia. Tex Heart Inst J. 2010;37:218–20.

    PubMed  PubMed Central  Google Scholar 

  125. Ko Ko NL, Minaskeian N, El Masry HZ. A case of irreversible bradycardia after rituximab therapy for diffuse large B-cell lymphoma. Cardiooncology. 2020;6:22.

    PubMed  PubMed Central  Google Scholar 

  126. Cheungpasitporn W, Kopecky SL, Specks U, Bharucha K, Fervenza FC. Nonischemic cardiomyopathy after rituximab treatment for membranous nephropathy. J Renal Injury Prev. 2017;6:18–25.

    CAS  Google Scholar 

  127. Bross PF, Kane R, Farrell AT, Abraham S, Benson K, Brower ME, et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res. 2004;10:3954–64.

    CAS  PubMed  Google Scholar 

  128. Enrico O, Gabriele B, Nadia C, Sara G, Daniele V, Giulia C, et al. Unexpected cardiotoxicity in haematological bertozomib treated patients. Br J Haematol. 2007;138(396):8.

    Google Scholar 

  129. Xiao Y, Yin J, Wei J, Shang Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9:e87671.

    PubMed  PubMed Central  Google Scholar 

  130. Willis MS, Patterson C. Into the heart: the emerging role of the ubiquitin-proteasome system. J Mol Cell Cardiol. 2006;41:567–79.

    CAS  PubMed  Google Scholar 

  131. Nowis D, Maczewski M, Mackiewicz U, Kujawa M, Ratajska A, Wieckowski MR, et al. Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol. 2010;176:2658–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yu X, Huang S, Patterson E, Garrett MW, Kaufman KM, Metcalf JP, et al. Proteasome degradation of GRK2 during ischemia and ventricular tachyarrhythmias in a canine model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289:H1960-7.

    CAS  PubMed  Google Scholar 

  133. Spencer CM, Faulds D. Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs. 1994;48:794–847.

    CAS  PubMed  Google Scholar 

  134. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with taxol. J Natl Cancer Inst Mono. 1993;15:117–30.

    Google Scholar 

  135. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9:1704–12.

    CAS  PubMed  Google Scholar 

  136. Trimble EL, Adams JD, Vena D, Hawkins MJ, Friedman MA, Fisherman JS, et al. Paclitaxel for platinum-refractory ovarian cancer: results from the first 1,000 patients registered to National Cancer Institute Treatment Referral Center. J Clin Oncol. 1993;11:2405–10.

    CAS  PubMed  Google Scholar 

  137. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, et al. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med. 1989;111:273–9.

    CAS  PubMed  Google Scholar 

  138. Rowinsky EK, Gilbert MR, Maguire WP, Noe DA, Grochow LB, Forastiere AA, et al. Sequences of taxol and cisplatin: a phase I and pharmacologic study. J Clin Oncol. 1991;9:1692–703.

    CAS  PubMed  Google Scholar 

  139. Sarosy G, Kohn E, Stone DA, Rothenberg M, Jacob J, Adamo DO, et al. Phase I study of taxol and granulocyte colony-stimulating factor in patients with refractory ovarian cancer. J Clin Oncol. 1992;10:1165–70.

    CAS  PubMed  Google Scholar 

  140. Kohn EC, Sarosy G, Bicher A, Link C, Christian M, Steinberg SM, et al. Dose-intense taxol: high response rate in patients with platinum-resistant recurrent ovarian cancer. J Natl Cancer Inst. 1994;86:18–24.

    CAS  PubMed  Google Scholar 

  141. Glück S, Germond C, Lopez P, Cano P, Dorreen M, Koski T, et al. A phase I trial of high-dose paclitaxel, cyclophosphamide and mitoxantrone with autologous blood stem cell support for the treatment of metastatic breast cancer. Eur J Cancer. 1998;34:1008–14.

    PubMed  Google Scholar 

  142. Kanat O, Evrensel T, Baran I, Coskun H, Zarifoglu M, Turan OF, et al. Protective effect of amifostine against toxicity of paclitaxel and carboplatin in non-small cell lung cancer: a single center randomized study. Med Oncol. 2003;20:237–45.

    CAS  PubMed  Google Scholar 

  143. Kietpeerakool C, Tiyayon J, Suprasert P, Kanjanavanit R, Srisomboon J. Benefit of electrocardiography during front-line combination paclitaxel and carboplatin chemotherapy for epithelial ovarian cancer. J Med Assoc Thai. 2006;89:1805–10.

    PubMed  Google Scholar 

  144. Taxol® (paclitaxel) for injection, Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020262s049lbl.pdf. Accessed 10 Apr 2021.

  145. Brouty-Boye D, Kolonias D, Lampidis TJ. Antiproliferative activity of taxol on human tumor and normal breast cells vs. effects on cardiac cells. Int J Cancer. 1995;60:571–5.

    CAS  PubMed  Google Scholar 

  146. Alloatti G, Penna C, Gallo MP, Levi RC, Bombardelli E, Appendino G. Differential effects of paclitaxel and derivatives on guinea pig isolated heart and papillary muscle. J Pharmacol Exp Ther. 1998;284:561–7.

    CAS  PubMed  Google Scholar 

  147. Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, et al. Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res. 2010;85:691–700.

    CAS  PubMed  Google Scholar 

  148. Butters TD, Aslanidi OV, Inada S. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ Res. 2010;107:126–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Howarth FC, Calaghan SC, Boyett MR, White E. Effect of the microtubule polymerizing agent taxol on contraction, Ca2+ transient and L-type Ca2+ current in rat ventricular myocytes. J Physiol. 1999;516:409–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Boehmerle W, Splittgerber U, Lazarus MB, et al. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA. 2006;103:18356–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang K, Heidrich FM, DeGray B, Boehmerle W, Ehrlich BE. Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R. J Mol Cell Cardiol. 2010;49:829–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Dodds HM, Rivory LP. The mechanism for the inhibition of acetylcholinesterases by irinotecan (CPT-11). Mol Pharmacol. 1999;56:1346–53.

    CAS  PubMed  Google Scholar 

  153. Tsuboya A, Fujita KI, Kubota Y, Ishida H, Taki-Takemoto I, Kamei D, et al. Coadministration of cytotoxic chemotherapeutic agents with irinotecan is a risk factor for irinotecan-induced cholinergic syndrome in Japanese patients with cancer. Int J Clin Oncol. 2019;24:222–30.

    CAS  PubMed  Google Scholar 

  154. Morcos PN, Bogman K, Hubeaux S, Sturm-Pellanda C, Ruf T, Bordogna W, et al. Effect of alectinib on cardiac electrophysiology: results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies. Cancer Chemother Pharmacol. 2017;79:559–68.

    CAS  PubMed  Google Scholar 

  155. Alecensa® (alectinib) capsules, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208434s003lbl.pdf. Accessed 10 Apr 2021.

  156. Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, et al. Updated efficacy and safety data and impact of the EML4-ALK fusion variant on the efficacy of alectinib in untreated alk-positive advanced non-small cell lung cancer in the global phase III ALEX Study. J Thorac Oncol. 2019;14:1233–43.

    CAS  PubMed  Google Scholar 

  157. Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390:29–39.

    CAS  PubMed  Google Scholar 

  158. Alecensa® (Alectinib) capsules, Prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/208434s000lbl.pdf. Accessed  10 Apr 2021.

  159. Sharma S, Abhyankar V, Burgess RE, Infante J, Trowbridge RC, Tarazi J, et al. A phase I study of axitinib (AG-013736) in combination with bevacizumab plus chemotherapy or chemotherapy alone in patients with metastatic colorectal cancer and other solid tumors. Ann Oncol. 2010;21:297–304.

    CAS  PubMed  Google Scholar 

  160. Cortes JE, Kantarjian HM, Brümmendorf TH, Kim DW, Turkina AG, Shen ZX, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118:4567–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Camidge DR, Kim HR, Ahn MJ, Yang JCH, Han JY, Hochmair MJ, et al. Brigatinib versus crizotinib in advanced ALK inhibitor-naive ALK-positive non-small cell lung cancer: second interim analysis of the phase III ALTA-1L Trial. J Clin Oncol. 2020;38:3592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Alunbrig® (brigatinib) tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208772s008lbl.pdf. Accessed 10 Apr 2021.

  163. Khozin S, Blumenthal GM, Zhang L, Tang S, Brower M, Fox E, et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase–positive non–small cell lung cancer. Clin Cancer Res. 2015;21:2436–9.

    CAS  PubMed  Google Scholar 

  164. Zykadia™ (Ceritinib) capsules, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211225s000lbl.pdf. Accessed 10 Apr 2021.

  165. Zhang Z, Huang TQ, Nepliouev I, Zhang H, Barnett AS, Rosenberg PB, et al. Crizotinib Inhibits hyperpolarization-activated cyclic nucleotide-gated channel 4 activity. Cardiooncology. 2017;3:1.

    PubMed  PubMed Central  Google Scholar 

  166. Ou SH, Azada M, Dy J, Stiber JA. Asymptomatic profound sinus bradycardia (heart rate ≤45) in non-small cell lung cancer patients treated with crizotinib. J Thorac Oncol. 2011;6:2135–7.

    PubMed  Google Scholar 

  167. Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    CAS  PubMed  Google Scholar 

  168. Nickens D, Tan W, Wilner K, et al. A pharmacokinetics/pharmacodynamics evaluation of the concentration-QTc relationship of PF-02341066 (PF-1066), an ALK and c-MET/HGFR dual inhibitor administered to patients with advanced cancer. In: 101st annual meeting of the American Association for Cancer Research, Washington, DC, USA, April 17–21. 2010: Abstract 1673.

  169. Xalkori® (crizotinib) Capsules, oral, Prescribing information. https://www.ema.europa.eu/en/documents/product-information/xalkori-epar-product-information_en.pdf. Accessed 10 Apr 2021.

  170. Blackhall F, Ross Camidge D, Shaw AT, Soria JC, Solomon BJ, Mok T, et al. Final results of the large-scale multinational trial PROFILE 1005: efficacy and safety of crizotinib in previously treated patients with advanced/metastatic ALK-positive non-small-cell lung cancer. ESMO Open. 2017;2:e000219.

    PubMed  PubMed Central  Google Scholar 

  171. Ou SH, Tong WP, Azada M, Siwak-Tapp C, Dy J, Stiber JA. Heart rate decrease during crizotinib treatment and potential correlation to clinical response. Cancer. 2013;119:1969–75.

    CAS  PubMed  Google Scholar 

  172. Kazandjian D, Blumenthal GM, Chen HY, He K, Patel M, Justice R, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist. 2014;19:e5-11.

    PubMed  PubMed Central  Google Scholar 

  173. Ou SH, Tang Y, Polli A, Wilner KD, Schnell P. Factors associated with sinus bradycardia during crizotinib treatment: a retrospective analysis of two large-scale multinational trials (PROFILE 1005 and 1007). Cancer Med. 2016;5:617–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Solomon BJ, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, et al. Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in ALK-mutation-positive non-small-cell lung cancer. J Clin Oncol. 2018;36:2251–8.

    CAS  PubMed  Google Scholar 

  175. Shaw A, Riely G, Bang Y-J, Kim D-W, Camidge D, Solomon B, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019;30:1121–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Shaw AT, Kim DW, Nagakawa K, Seto T, Crinó L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    CAS  PubMed  Google Scholar 

  177. Solomon BJ, Cappuzzo F, Felip E, Blackhall FH, Costa DB, Kim D-W, et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non–small-cell lung cancer: results from PROFILE 1014. J Clin Oncol. 2016;34:2858–65.

    CAS  PubMed  Google Scholar 

  178. Tafinlar® (trametinib), capsules for oral use. https://www.ema.europa.eu/en/documents/product-information/tafinlar-epar-product-information_en.pdf. Accessed 10 Apr 2021.

  179. Doherty KR, Wappel RL, Talbert DR, Trusk PB, Moran DM, Kramer JW, et al. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013;272:245–55.

    CAS  PubMed  Google Scholar 

  180. Ogura T, Shuba LM, McDonald TF. L-type Ca2+ current in guinea pig ventricular myocytes treated with modulators of tyrosine phosphorylation. Am J Physiol. 1999;276:H1724-33.

    CAS  PubMed  Google Scholar 

  181. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, et al. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol. 2001;281:H1835-62.

    CAS  PubMed  Google Scholar 

  182. Lu Z, Wu C-YC, Jiang Y-P, Ballou LM, Clausen C, Cohen IS, et al. Suppression of phosphoinositide 3-kinase signaling and alteration of multiple ion currents in drug-induced long QT syndrome. Sci Transl Med. 2012;4:131–50.

    Google Scholar 

  183. Yang T, Chun YW, Stroud DM, Mosley JD, Knollmann BC, Hong C, et al. Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current. Circulation. 2014;130:224–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lin RZ, Lu Z, Anyukhovsky EP, Jiang YP, Wang HZ, Gao J, et al. Regulation of heart rate and the pacemaker current by phosphoinositide 3-kinase signaling. J Gen Physiol. 2019;151:1051–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Banks M, Crowell K, Proctor A, Jensen BC. Cardiovascular effects of the MEK inhibitor, trametinib: a case report, literature review, and consideration of mechanism. Cardiovasc Toxicol. 2017;17:487–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Lamore SD, Kohnken RA, Peters MF, Kolaja KL. Cardiovascular toxicity induced by kinase inhibitors: mechanisms and preclinical approaches. Chem Res Toxicol. 2020;33:125–36.

    CAS  PubMed  Google Scholar 

  187. Groarke JD, Cheng S, Moslehi J. Cancer-drug discovery and cardiovascular surveillance. N Engl J Med. 2013;369:1779–81.

    CAS  PubMed  Google Scholar 

  188. Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13:1–10.

    PubMed  Google Scholar 

  189. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm.

  190. Hersh MR, Linn W, Kuhn JG, Von Hoff DD. Electrocardiographic monitoring of patients receiving phase I cancer chemotherapy. Cancer Treat Rep. 1986;70:349–52.

    CAS  PubMed  Google Scholar 

  191. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, ESMO Guidelines Committee, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31:171–90.

    CAS  PubMed  Google Scholar 

  192. Robinson RB, Dun W, Boyden PA. Autonomic modulation of sinoatrial node: role of pacemaker current and calcium sensitive adenylyl cyclase isoforms. Prog Biophys Mol Biol. 2020;S0079–6107:30080–8.

    Google Scholar 

  193. Glukhov AV, Kalyanasundaram A, Lou Q, Hage LT, Hansen BJ, Belevych AE, et al. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1. Eur Heart J. 2015;36:686–97.

    CAS  PubMed  Google Scholar 

  194. Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 2011;121:3277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10:e005443.

    PubMed  Google Scholar 

  196. Tristani-Firouzi M. Revisiting the challenges of universal screening for long QT syndrome. J Electrocardiol. 2015;48:1053–7.

    PubMed  Google Scholar 

  197. Chandrasekhar S, Fradley MG. QT interval prolongation associated with cytotoxic and targeted cancer therapeutics. Curr Treat Options Oncol. 2019;20:55.

    PubMed  Google Scholar 

  198. Naing A, Veasey-Rodrigues H, Hong DS, Fu S, Falchook GS, Wheler JJ, et al. Electrocardiograms (ECGs) in phase I anticancer drug development: the MD Anderson Cancer Center experience with 8518 ECGs. Ann Oncol. 2012;23:2960–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ono K, Ito H. Role of rapidly activating delayed rectifier K+ current in sinoatrial node pacemaker activity. Am J Physiol. 1995;269:H453-62.

    CAS  PubMed  Google Scholar 

  200. Lei M, Brown HF. Two components of the delayed rectifier potassium current, IK, in rabbit sino-atrial node cells. Exp Physiol. 1996;81:725–41.

    CAS  PubMed  Google Scholar 

  201. Verheijck EE, van Ginneken AC, Bourier J, Bouman LN. Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit. Circ Res. 1995;76:607–15.

    CAS  PubMed  Google Scholar 

  202. Tohse N, Kanno M. Effects of dofetilide on membrane currents in sinoatrial node cells of rabbit. Jpn J Pharmacol. 1995;69:303–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank P Vaquero for her invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Tamargo.

Ethics declarations

Funding

This work was supported by grants from the Ministerio de Ciencia e Innovación (SAF2017-88116-P), Instituto de Salud Carlos III (CIBER-Cardiovascular [CB16/11/00303]), and Comunidad de Madrid (B2017/BMD-3738).

Conflict of interest

Juan Tamargo, Ricardo Caballero, and Eva Delpón have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Author contributions

Initial idea and overall supervision: JT. Related search: JT, RC, ED. Data collection: JT, RC, ED. There were no disagreements between authors, and all authors read and approved the final version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamargo, J., Caballero, R. & Delpón, E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 45, 101–126 (2022). https://doi.org/10.1007/s40264-021-01132-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01132-5

Navigation