Skip to main content

Advertisement

Log in

Granulocyte Colony-Stimulating Factor (G-CSF) for the Treatment of Spinal Cord Injury

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a common medical condition with a poor prognosis for recovery and catastrophic effects on a patient’s quality of life. Available treatments for SCI are limited, and the evidence suggesting their harmful side effects is more consistent than any suggestion of clinical benefit. Developing novel safe and effective therapeutic options for SCI is crucial. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine with known multifaceted effects on the central nervous system. Herein, we review the accumulating preclinical evidence for the beneficial effects of G-CSF on functional and structural outcomes after SCI. Meanwhile we present and discuss multiple mechanisms for G-CSF’s neuroprotective and neuroregenerative actions through the results of these studies. In addition, we present the available clinical evidence indicating the efficacy and safety of G-CSF administration for the treatment of acute and chronic traumatic SCI, compression myelopathy, and SCI-associated neuropathic pain. Our review indicates that although the quality of clinical evidence regarding the use of G-CSF in SCI is inadequate, the encouraging available preclinical and clinical data warrant its further clinical development, and bring new hope to the longstanding challenge that is treatment of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Furlan JC, Sakakibara BM, Miller WC, Krassioukov AV. Global incidence and prevalence of traumatic spinal cord injury. Can J Neurol Sci. 2013;40(4):456–64.

    Article  PubMed  Google Scholar 

  2. National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2016;39(4):493–94.

    Article  Google Scholar 

  3. Varma AK, Das A, Wallace GT, Barry J, Vertegel AA, Ray SK, et al. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res. 2013;38(5):895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004;4(4):451–64.

    Article  PubMed  Google Scholar 

  5. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp. 2011;71(2):281–99.

    Google Scholar 

  6. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26(24 Suppl):S2–12.

    Article  CAS  PubMed  Google Scholar 

  7. Ahuja CS, Martin AR, Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000 Res. 2016;5:1017. doi:10.12688/f1000research.7586.1.

    Article  Google Scholar 

  8. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005;11(5–6):913–22.

    Article  CAS  PubMed  Google Scholar 

  9. Marino RJ, Ditunno JF Jr, Donovan WH, Maynard F Jr. Neurologic recovery after traumatic spinal cord injury: data from the Model Spinal Cord Injury Systems. Arch Phys Med Rehabil. 1999;80(11):1391–6.

    Article  CAS  PubMed  Google Scholar 

  10. Kirshblum S, Millis S, McKinley W, Tulsky D. Late neurologic recovery after traumatic spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1811–7.

    Article  PubMed  Google Scholar 

  11. Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS. Traumatic spinal cord injury: current concepts and treatment update. Arq Neuropsiquiatr. 2017;75(6):387–93.

    Article  PubMed  Google Scholar 

  12. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322(20):1405–11.

    Article  CAS  PubMed  Google Scholar 

  13. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(1 Suppl):1–7.

    CAS  PubMed  Google Scholar 

  14. Ito Y, Sugimoto Y, Tomioka M, Kai N, Tanaka M. Does high dose methylprednisolone sodium succinate really improve neurological status in patient with acute cervical cord injury? A prospective study about neurological recovery and early complications. Spine. 2009;34(20):2121–4.

    Article  PubMed  Google Scholar 

  15. Matsumoto T, Tamaki T, Kawakami M, Yoshida M, Ando M, Yamada H. Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine. 2001;26(4):426–30.

    Article  CAS  PubMed  Google Scholar 

  16. Short DJ, El Masry WS, Jones PW. High dose methylprednisolone in the management of acute spinal cord injury: a systematic review from a clinical perspective. Spinal Cord. 2000;38(5):273–86.

    Article  CAS  PubMed  Google Scholar 

  17. Hurlbert RJ. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine. 2001;26(24 Suppl):S39–46.

    Article  CAS  PubMed  Google Scholar 

  18. Evaniew N, Belley-Cote EP, Fallah N, Noonan VK, Rivers CS, Dvorak MF. Methylprednisolone for the treatment of patients with acute spinal cord injuries: a systematic review and meta-analysis. J Neurotrauma. 2016;33(5):468–81.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1(1):80–100.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma. 1998;45(6):1088–93.

    Article  CAS  PubMed  Google Scholar 

  21. Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2013;72(Suppl 2):93–105.

    Article  PubMed  Google Scholar 

  22. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  23. Ha Y, Lee JE, Kim KN, Cho YE, Yoon DH. Intermediate filament nestin expressions in human cord blood monocytes (HCMNCs). Acta Neurochir. 2003;145(6):483–7.

    CAS  PubMed  Google Scholar 

  24. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport. 2000;11(13):3001–5.

    Article  CAS  PubMed  Google Scholar 

  25. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. 2002;22(15):6623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951–60.

    Article  CAS  PubMed  Google Scholar 

  27. Huang H, Chen L, Wang H, Xi H, Gou C, Zhang J, et al. Safety of fetal olfactory ensheathing cell transplantation in patients with chronic spinal cord injury. A 38-month follow-up with MRI. Zhongguo xiu fu chong jian wai ke za zhi. 2006;20(4):439–43.

    PubMed  Google Scholar 

  28. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, Emami-Razavi SH, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett. 2008;443(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  29. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuszynski MH, Steeves JD, Fawcett JW, Lammertse D, Kalichman M, Rask C, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord. 2007;45(3):222–31.

    Article  CAS  PubMed  Google Scholar 

  31. Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care. 2012;18(6):651–60.

    Article  PubMed  Google Scholar 

  32. Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury: a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med. 1991;324(26):1829–38.

    Article  CAS  PubMed  Google Scholar 

  33. Geisler FH, Coleman WP, Grieco G, Poonian D. The Sygen multicenter acute spinal cord injury study. Spine. 2001;26(24 Suppl):S87–98.

    Article  CAS  PubMed  Google Scholar 

  34. Chinnock P, Roberts I. Gangliosides for acute spinal cord injury. The Cochrane database of systematic reviews. 2005;(2):CD004444.

  35. Haghighi SS, Stiens T, Oro JJ, Madsen R. Evaluation of the calcium channel antagonist nimodipine after experimental spinal cord injury. Surg Neurol. 1993;39(5):403–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassie P, Thicoipe M, et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38(2):71–6.

    Article  CAS  PubMed  Google Scholar 

  37. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597–604.

    Article  CAS  PubMed  Google Scholar 

  38. Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg. 1992;76(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Pearse DD. Therapeutic hypothermia in spinal cord injury: the status of its use and open questions. Int J Mol Sci. 2015;16(8):16848–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levi AD, Green BA, Wang MY, Dietrich WD, Brindle T, Vanni S, et al. Clinical application of modest hypothermia after spinal cord injury. J Neurotrauma. 2009;26(3):407–15.

    Article  PubMed  Google Scholar 

  41. Dididze M, Green BA, Dietrich WD, Vanni S, Wang MY, Levi AD. Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord. 2013;51(5):395–400.

    Article  CAS  PubMed  Google Scholar 

  42. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994;330(9):585–91.

    Article  CAS  PubMed  Google Scholar 

  43. Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DS, Tator C, et al. A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. 2014;31(3):239–55.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem. 2006;97(5):1314–26.

    Article  CAS  PubMed  Google Scholar 

  45. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135(Pt 4):1224–36.

    Article  PubMed  Google Scholar 

  46. Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science. 1996;273(5274):510–3.

    Article  CAS  PubMed  Google Scholar 

  47. Wu JC, Huang WC, Chen YC, Tu TH, Tsai YA, Huang SF, et al. Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg Spine. 2011;15(3):216–27.

    Article  PubMed  Google Scholar 

  48. Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, et al. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 2005;58(5):706–19.

    Article  CAS  PubMed  Google Scholar 

  49. Zorner B, Schwab ME. Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci. 2010;1198(Suppl 1):E22–34.

    Article  PubMed  Google Scholar 

  50. Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI, et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma. 2011;28(5):787–96.

    Article  PubMed  Google Scholar 

  51. Xiao BG, Lu CZ, Link H. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007;11(6):1272–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78(11):2791–808.

    CAS  PubMed  Google Scholar 

  53. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34(3):745–51.

    Article  PubMed  CAS  Google Scholar 

  54. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Investig. 2005;115(8):2083–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fisher M. New approaches to neuroprotective drug development. Stroke. 2011;42(1 Suppl):S24–7.

    Article  PubMed  Google Scholar 

  56. Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C, et al. Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol. 2007;66(8):724–31.

    Article  CAS  PubMed  Google Scholar 

  57. Ha Y, Park HS, Park CW, Yoon SH, Park SR, Hyun DK, et al. Synthes Award for Resident Research on Spinal Cord and Spinal Column Injury: granulocyte macrophage colony stimulating factor (GM-CSF) prevents apoptosis and improves functional outcome in experimental spinal cord contusion injury. Clin Neurosurg. 2005;52:341–7.

    PubMed  Google Scholar 

  58. Kadota R, Koda M, Kawabe J, Hashimoto M, Nishio Y, Mannoji C, et al. Granulocyte colony-stimulating factor (G-CSF) protects oligodendrocyte and promotes hindlimb functional recovery after spinal cord injury in rats. PLoS One. 2012;7(11):e50391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo X, Bu X, Li Z, Yan Z, Jiang J, Zhou Z. Comparison of autologous bone marrow mononuclear cells transplantation and mobilization by granulocyte colony-stimulating factor in experimental spinal injury. Int J Neurosci. 2012;122(12):723–33.

    Article  CAS  PubMed  Google Scholar 

  60. Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006;26(3):402–13.

    Article  CAS  PubMed  Google Scholar 

  61. Pitzer C, Klussmann S, Kruger C, Letellier E, Plaas C, Dittgen T, et al. The hematopoietic factor granulocyte-colony stimulating factor improves outcome in experimental spinal cord injury. J Neurochem. 2010;113(4):930–42.

    Article  CAS  PubMed  Google Scholar 

  62. Klocke R, Kuhlmann MT, Scobioala S, Schabitz WR, Nikol S. Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Curr Med Chem. 2008;15(10):968–77.

    Article  CAS  PubMed  Google Scholar 

  63. Chen WF, Jean YH, Sung CS, Wu GJ, Huang SY, Ho JT, et al. Intrathecally injected granulocyte colony-stimulating factor produced neuroprotective effects in spinal cord ischemia via the mitogen-activated protein kinase and Akt pathways. Neuroscience. 2008;153(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  64. Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res. 2009;31(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  65. Guo Y, Liu S, Wang P, Zhang H, Wang F, Bing L, et al. Granulocyte colony-stimulating factor improves neuron survival in experimental spinal cord injury by regulating nucleophosmin-1 expression. J Neurosci Res. 2014;92(6):751–60.

    Article  CAS  PubMed  Google Scholar 

  66. Chen WF, Sung CS, Jean YH, Su TM, Wang HC, Ho JT, et al. Suppressive effects of intrathecal granulocyte colony-stimulating factor on excessive release of excitatory amino acids in the spinal cerebrospinal fluid of rats with cord ischemia: role of glutamate transporters. Neuroscience. 2010;165(4):1217–32.

    Article  CAS  PubMed  Google Scholar 

  67. Guo Y, Liu S, Zhang X, Wang L, Gao J, Han A, et al. G-CSF promotes autophagy and reduces neural tissue damage after spinal cord injury in mice. Lab Invest. 2015;95(12):1439–49.

    Article  CAS  PubMed  Google Scholar 

  68. Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C, et al. Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res. 2007;1149:223–31.

    Article  CAS  PubMed  Google Scholar 

  69. Urdzikova L, Likavcanova-Masinova K, Vanecek V, Ruzicka J, Sedy J, Sykova E, et al. Flt3 ligand synergizes with granulocyte-colony-stimulating factor in bone marrow mobilization to improve functional outcome after spinal cord injury in the rat. Cytotherapy. 2011;13(9):1090–104.

    Article  CAS  PubMed  Google Scholar 

  70. Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ. 2006;174(7):927–33.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res. 2006;1098(1):161–9.

    Article  PubMed  CAS  Google Scholar 

  72. Minnerup J, Sevimli S, Schabitz WR. Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies. Exp Transl Stroke Med. 2009;1:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation. 2006;113(5):701–10.

    Article  CAS  PubMed  Google Scholar 

  74. Bouhy D, Malgrange B, Multon S, Poirrier AL, Scholtes F, Schoenen J, et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 2006;20(8):1239–41.

    Article  CAS  PubMed  Google Scholar 

  75. Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M. G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun. 2002;297(4):1058–61.

    Article  CAS  PubMed  Google Scholar 

  76. Chen CH, Huang SY, Chen NF, Feng CW, Hung HC, Sung CS, et al. Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia. Neuroscience. 2013;242:39–52.

    Article  CAS  PubMed  Google Scholar 

  77. Guo Y, Zhang H, Yang J, Liu S, Bing L, Gao J, et al. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience. 2013;238:1–10.

    Article  CAS  PubMed  Google Scholar 

  78. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci. 2016;10:98.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Garcia E, Aguilar-Cevallos J, Silva-Garcia R, Ibarra A. Cytokine and growth factor activation in vivo and in vitro after spinal cord injury. Mediat Inflamm. 2016;2016:9476020.

    Google Scholar 

  80. Heard SO, Fink MP. Counterregulatory control of the acute inflammatory response: granulocyte colony-stimulating factor has anti-inflammatory properties. Crit Care Med. 1999;27(5):1019–21.

    Article  CAS  PubMed  Google Scholar 

  81. Kato K, Koda M, Takahashi H, Sakuma T, Inada T, Kamiya K, et al. Granulocyte colony-stimulating factor attenuates spinal cord injury-induced mechanical allodynia in adult rats. J Neurol Sci. 2015;355(1–2):79–83.

    Article  CAS  PubMed  Google Scholar 

  82. Sevimli S, Diederich K, Strecker JK, Schilling M, Klocke R, Nikol S, et al. Endogenous brain protection by granulocyte-colony stimulating factor after ischemic stroke. Exp Neurol. 2009;217(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  83. Grilli M, Memo M. Nuclear factor-kappaB/Rel proteins: a point of convergence of signalling pathways relevant in neuronal function and dysfunction. Biochem Pharmacol. 1999;57(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  84. Khorasanizadeh M, Eskian M, Gelfand EW, Rezaei N. Mitogen-activated protein kinases as therapeutic targets for asthma. Pharmacol Ther. 2017;174:112–26.

    Article  CAS  PubMed  Google Scholar 

  85. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058(1–2):120–8.

    Article  CAS  PubMed  Google Scholar 

  86. Hartung T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr Opin Hematol. 1998;5(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  87. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Imai M, Watanabe M, Suyama K, Osada T, Sakai D, Kawada H, et al. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. J Neurosurg Spine. 2008;8(1):58–66.

    Article  PubMed  Google Scholar 

  89. Chung J, Kim MH, Yoon YJ, Kim KH, Park SR, Choi BH. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. J Neurosurg Spine. 2014;21(6):966–73.

    Article  PubMed  Google Scholar 

  90. Chen WF, Chen CH, Chen NF, Sung CS, Wen ZH. Neuroprotective effects of direct intrathecal administration of granulocyte colony-stimulating factor in rats with spinal cord injury. CNS Neurosci Ther. 2015;21(9):698–707.

    Article  CAS  PubMed  Google Scholar 

  91. Sanli AM, Serbes G, Caliskan M, Kaptanoglu E, Sargon MF, Kilinc K, et al. Effect of granulocyte-colony stimulating factor on spinal cord tissue after experimental contusion injury. J Clin Neurosci. 2010;17(12):1548–52.

    Article  CAS  PubMed  Google Scholar 

  92. Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol. 2007;184(1–2):100–12.

    Article  CAS  PubMed  Google Scholar 

  93. Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R. Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol. 2002;133(1–2):72–80.

    Article  CAS  PubMed  Google Scholar 

  94. Sicotte M, Tsatas O, Jeong SY, Cai CQ, He Z, David S. Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci. 2003;23(2):251–63.

    Article  CAS  PubMed  Google Scholar 

  95. Deboy CA, Xin J, Byram SC, Serpe CJ, Sanders VM, Jones KJ. Immune-mediated neuroprotection of axotomized mouse facial motoneurons is dependent on the IL-4/STAT6 signaling pathway in CD4(+) T cells. Exp Neurol. 2006;201(1):212–24.

    Article  CAS  PubMed  Google Scholar 

  96. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL. Neuroprotection by IL-10-producing MOG CD4 + T cells following ischemic stroke. J Neurol Sci. 2005;233(1–2):125–32.

    Article  CAS  PubMed  Google Scholar 

  97. Gimsa U, Wolf SA, Haas D, Bechmann I, Nitsch R. Th2 cells support intrinsic anti-inflammatory properties of the brain. J Neuroimmunol. 2001;119(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  98. Kawabe J, Koda M, Hashimoto M, Fujiyoshi T, Furuya T, Endo T, et al. Neuroprotective effects of granulocyte colony-stimulating factor and relationship to promotion of angiogenesis after spinal cord injury in rats: laboratory investigation. J Neurosurg Spine. 2011;15(4):414–21.

    Article  PubMed  Google Scholar 

  99. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin DJ, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J. 2005;19(14):2005–7.

    CAS  PubMed  Google Scholar 

  100. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  101. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110(13):1847–54.

    Article  CAS  PubMed  Google Scholar 

  102. Minamino K, Adachi Y, Okigaki M, Ito H, Togawa Y, Fujita K, et al. Macrophage colony-stimulating factor (M-CSF), as well as granulocyte colony-stimulating factor (G-CSF), accelerates neovascularization. Stem Cells. 2005;23(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  103. Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood. 2006;108(7):2438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qin Y, Zhang W, Yang P. Current states of endogenous stem cells in adult spinal cord. J Neurosci Res. 2015;93(3):391–8.

    Article  CAS  PubMed  Google Scholar 

  105. Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72(2):235–7.

    Article  PubMed  Google Scholar 

  106. Gregoire CA, Goldenstein BL, Floriddia EM, Barnabe-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63(8):1469–82.

    Article  PubMed  Google Scholar 

  107. Sabelstrom H, Stenudd M, Frisen J. Neural stem cells in the adult spinal cord. Exp Neurol. 2014;260:44–9.

    Article  PubMed  CAS  Google Scholar 

  108. Lee JS, Yang CC, Kuo YM, Sze CI, Hsu JY, Huang YH, et al. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Spine. 2012;37(1):10–7.

    Article  PubMed  Google Scholar 

  109. Luo J, Zhang HT, Jiang XD, Xue S, Ke YQ. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection. Acta Neurochir. 2009;151(11):1483–92.

    Article  PubMed  Google Scholar 

  110. Osada T, Watanabe M, Hasuo A, Imai M, Suyama K, Sakai D, et al. Efficacy of the coadministration of granulocyte colony-stimulating factor and stem cell factor in the activation of intrinsic cells after spinal cord injury in mice. J Neurosurg Spine. 2010;13(4):516–23.

    Article  PubMed  Google Scholar 

  111. Pan HC, Cheng FC, Lai SZ, Yang DY, Wang YC, Lee MS. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells. J Clin Neurosci. 2008;15(6):656–64.

    Article  CAS  PubMed  Google Scholar 

  112. Dittgen T, Pitzer C, Plaas C, Kirsch F, Vogt G, Laage R, et al. Granulocyte-colony stimulating factor (G-CSF) improves motor recovery in the rat impactor model for spinal cord injury. PLoS One. 2012;7(1):e29880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006;23(9):1379–91.

    Article  PubMed  Google Scholar 

  114. Fan ZZ, Cai HB, Ge ZM, Wang LQ, Zhang XD, Li L, et al. The efficacy and safety of granulocyte colony-stimulating factor for patients with stroke. J Stroke Cerebrovasc Dis. 2015;24(8):1701–8.

    Article  PubMed  Google Scholar 

  115. Abdel-Latif A, Bolli R, Zuba-Surma EK, Tleyjeh IM, Hornung CA, Dawn B. Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2008;156(2):216–26.e9.

  116. Zhang Y, Wang L, Fu Y, Song H, Zhao H, Deng M, et al. Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis. Amyotroph Later Sclerosis. 2009;10(5–6):430–1.

    Article  CAS  Google Scholar 

  117. Duning T, Schiffbauer H, Warnecke T, Mohammadi S, Floel A, Kolpatzik K, et al. G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: a pilot trial. PLoS One. 2011;6(3):e17770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sanchez-Ramos J, Cimino C, Avila R, Rowe A, Chen R, Whelan G, et al. Pilot study of granulocyte-colony stimulating factor for treatment of Alzheimer’s disease. J Alzheimer’s Dis. 2012;31(4):843–55.

    CAS  Google Scholar 

  119. Takahashi H, Yamazaki M, Okawa A, Sakuma T, Kato K, Hashimoto M, et al. Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial. Eur Spine J. 2012;21(12):2580–7.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Inada T, Takahashi H, Yamazaki M, Okawa A, Sakuma T, Kato K, et al. Multicenter prospective nonrandomized controlled clinical trial to prove neurotherapeutic effects of granulocyte colony-stimulating factor for acute spinal cord injury: analyses of follow-up cases after at least 1 year. Spine. 2014;39(3):213–9.

    Article  PubMed  Google Scholar 

  121. Kamiya K, Koda M, Furuya T, Kato K, Takahashi H, Sakuma T, et al. Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: a comparison with high-dose methylprednisolone as a historical control. Eur Spine J. 2015;24(5):963–7.

    Article  PubMed  Google Scholar 

  122. Asaithambi G, Tong X, George MG, Tsai AW, Peacock JM, Luepker RV, et al. Acute stroke reperfusion therapy trends in the expanded treatment window era. J Stroke Cerebrovasc Dis. 2014;23(9):2316–21.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shin YK, Cho SR. Exploring erythropoietin and G-CSF combination therapy in chronic stroke patients. Int J Mol Sci. 2016;17(4):463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Meier P, Gloekler S, de Marchi SF, Indermuehle A, Rutz T, Traupe T, et al. Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation. 2009;120(14):1355–63.

    Article  CAS  PubMed  Google Scholar 

  125. Derakhshanrad N, Saberi H, Yekaninejad MS, Eskandari G, Mardani A, Rahdari F, et al. Safety of granulocyte colony-stimulating factor (G-CSF) administration for postrehabilitated motor complete spinal cord injury patients: an open-label, phase I study. Cell Transpl. 2013;22(Suppl 1):S139–46.

    Article  Google Scholar 

  126. Saberi H, Derakhshanrad N, Yekaninejad MS. Comparison of neurological and functional outcomes after administration of granulocyte-colony-stimulating factor in motor-complete versus motor-incomplete postrehabilitated, chronic spinal cord injuries: a phase I/II study. Cell Transpl. 2014;23(Suppl 1):S19–23.

    Article  Google Scholar 

  127. Fehlings MG, Skaf G. A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine. 1998;23(24):2730–7.

    Article  CAS  PubMed  Google Scholar 

  128. Tetreault L, Goldstein CL, Arnold P, Harrop J, Hilibrand A, Nouri A, et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery. 2015;77(Suppl 4):S51–67.

    Article  PubMed  Google Scholar 

  129. Sakuma T, Yamazaki M, Okawa A, Takahashi H, Kato K, Hashimoto M, et al. Neuroprotective therapy using granulocyte colony-stimulating factor for patients with worsening symptoms of compression myelopathy, part 1: a phase I and IIa clinical trial. Eur Spine J. 2012;21(3):482–9.

    Article  PubMed  Google Scholar 

  130. Sakuma T, Yamazaki M, Okawa A, Takahashi H, Kato K, Hashimoto M, et al. Neuroprotective therapy using granulocyte colony-stimulating factor for patients with worsening symptoms of thoracic myelopathy: a multicenter prospective controlled trial. Spine. 2012;37(17):1475–8.

    Article  PubMed  Google Scholar 

  131. Baastrup C, Finnerup NB. Pharmacological management of neuropathic pain following spinal cord injury. CNS Drugs. 2008;22(6):455–75.

    Article  CAS  PubMed  Google Scholar 

  132. Yamazaki M, Sakuma T, Kato K, Furuya T, Koda M. Granulocyte colony-stimulating factor reduced neuropathic pain associated with thoracic compression myelopathy: report of two cases. J Spinal Cord Med. 2013;36(1):40–3.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kato K, Yamazaki M, Okawa A, Furuya T, Sakuma T, Takahashi H, et al. Intravenous administration of granulocyte colony-stimulating factor for treating neuropathic pain associated with compression myelopathy: a phase I and IIa clinical trial. Eur Spine J. 2013;22(1):197–204.

    Article  PubMed  Google Scholar 

  134. Murata M, Harada M, Kato S, Takahashi S, Ogawa H, Okamoto S, et al. Peripheral blood stem cell mobilization and apheresis: analysis of adverse events in 94 normal donors. Bone Marrow Transpl. 1999;24(10):1065–71.

    Article  CAS  Google Scholar 

  135. Stroncek DF, Clay ME, Petzoldt ML, Smith J, Jaszcz W, Oldham FB, et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34 + cell counts and on the collection of peripheral blood stem cells. Transfusion. 1996;36(7):601–10.

    Article  CAS  PubMed  Google Scholar 

  136. Mhaskar R, Clark OA, Lyman G, Engel Ayer Botrel T, Morganti Paladini L, Djulbegovic B. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. The Cochrane database of systematic reviews. 2014;10:CD003039.

  137. Kliesch WF, Cruse JM, Lewis RE, Bishop GR, Brackin B, Lampton JA. Restoration of depressed immune function in spinal cord injury patients receiving rehabilitation therapy. Paraplegia. 1996;34(2):82–90.

    CAS  PubMed  Google Scholar 

  138. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells. 2007;25(8):2066–73.

    Article  PubMed  Google Scholar 

  139. Macias MY, Syring MB, Pizzi MA, Crowe MJ, Alexanian AR, Kurpad SN. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Exp Neurol. 2006;201(2):335–48.

    Article  CAS  PubMed  Google Scholar 

  140. Tolcher AW, Giusti RM, O’Shaughnessy JA, Cowan KH. Arterial thrombosis associated with granulocyte-macrophage colony-stimulating factor (GM-CSF) administration in breast cancer patients treated with dose-intensive chemotherapy: a report of two cases. Cancer Invest. 1995;13(2):188–92.

    Article  CAS  PubMed  Google Scholar 

  141. Becker PS, Wagle M, Matous S, Swanson RS, Pihan G, Lowry PA, et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transpl. 1997;3(1):45–9.

    CAS  Google Scholar 

  142. Azuma J, Awata S, Sawamura A, Tsuji S, Yoshida H, Seto Y, et al. Phase 1 study of KRN8601 (rhG-CSF) in normal healthy volunteers: safety and pharmacokinetics in consecutive intravenous infusion. Rinsho Iyaku J Clin Ther Med. 1989;5:1605–22.

    Google Scholar 

  143. Zhang XM, Du F, Yang D, Wang R, Yu CJ, Huang XN, et al. Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci. 2011;12:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;9(3):e90953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gazitt Y. Comparison between granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol. 2002;9(3):190–8.

    Article  PubMed  Google Scholar 

  146. Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, et al. Early intravenous delivery of human brain stromal cells modulates systemic inflammation and leads to vasoprotection in traumatic spinal cord injury. Stem Cells Transl Med. 2016;5(8):991–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Morita T, Sasaki M, Kataoka-Sasaki Y, Nakazaki M, Nagahama H, Oka S, et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience. 2016;335:221–31.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang D, He X. A meta-analysis of the motion function through the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells in rats. PLoS One. 2014;9(4):e93487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hess DA, Levac KD, Karanu FN, Rosu-Myles M, White MJ, Gallacher L, et al. Functional analysis of human hematopoietic repopulating cells mobilized with granulocyte colony-stimulating factor alone versus granulocyte colony-stimulating factor in combination with stem cell factor. Blood. 2002;100(3):869–78.

    Article  CAS  PubMed  Google Scholar 

  150. Zhao LR, Piao CS, Murikinati SR, Gonzalez-Toledo ME. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. Recent Pat CNS Drug Discov. 2013;8(1):2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Timeus F, Ricotti E, Crescenzio N, Garelli E, Doria A, Spinelli M, et al. Flt-3 and its ligand are expressed in neural crest-derived tumors and promote survival and proliferation of their cell lines. Lab Invest. 2001;81(7):1025–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vafa Rahimi-Movaghar.

Ethics declarations

Funding

None.

Conflicts of Interest

MirHojjat Khorasanizadeh, Mahsa Eskian, Alexander R. Vaccaro, and Vafa Rahimi-Movaghar declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorasanizadeh, M., Eskian, M., Vaccaro, A.R. et al. Granulocyte Colony-Stimulating Factor (G-CSF) for the Treatment of Spinal Cord Injury. CNS Drugs 31, 911–937 (2017). https://doi.org/10.1007/s40263-017-0472-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-017-0472-6

Navigation