Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Eravacycline

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

On 27 August, 2018, the US Food and Drug Administration approved eravacycline, a fluorocycline antimicrobial agent within the tetracycline class of antibacterial drugs, for the treatment of complicated intra-abdominal infections in patients aged 18 years and older. This decision was based on substantial clinical and pre-clinical data, including rigorous pharmacokinetic and pharmacodynamic work. This paper examines the in-vivo pharmacokinetic/pharmacodynamic work that led to the approval of eravacycline and explores how this important new antibiotic may be used to treat aggressive multidrug-resistant infections in the years ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao XY, Hunt DK, Zhou J, Clark RB, Dunwoody N, Fyfe C, et al. Fluorocyclines. 1. 7-Fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem. 2012;55(2):597–605.

    Article  CAS  Google Scholar 

  2. Kang Y, Li Q, Mei L, Zhao H, Bai Y, Shen M, et al. Tetracycline resistance genes are more prevalent in wet soils than in dry soils. Ecotoxicol Environ Saf. 2018;156:337–43.

    Article  CAS  Google Scholar 

  3. Nelson KM, Viswanathan K, Dawadi S, Duckworth BP, Boshoff HI, Barry CE, et al. Synthesis and pharmacokinetic evaluation of siderophore biosynthesis inhibitors for Mycobacterium tuberculosis. J Med Chem. 2015;58(14):5459–75.

    Article  CAS  Google Scholar 

  4. Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Quale J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob Agents Chemother. 2015;59(3):1802–5.

    Article  Google Scholar 

  5. Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013;57(11):5548–58.

    Article  CAS  Google Scholar 

  6. Grossman TH, Starosta AL, Fyfe C, O’Brien W, Rothstein DM, Mikolajka A, et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother. 2012;56(5):2559–64.

    Article  CAS  Google Scholar 

  7. Snydman DR, McDermott LA, Jacobus NV, Kerstein K, Grossman TH, Sutcliffe JA. Evaluation of the in vitro activity of eravacycline against a broad spectrum of recent clinical anaerobic isolates. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.02206-17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao M, Lepak AJ, Marchillo K, VanHecker J, Andes DR. In vivo pharmacodynamic target assessment of eravacycline against Escherichia coli in a murine thigh infection model. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/aac.00250-17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thabit AK, Monogue ML, Nicolau DP. Eravacycline pharmacokinetics and challenges in defining humanized exposure in vivo. Antimicrob Agents Chemother. 2016;60(8):5072–5.

    Article  CAS  Google Scholar 

  10. Petraitis V, Petraitiene R, Maung BBW, Khan F, Alisauskaite I, Olesky M, et al. Pharmacokinetics and comprehensive analysis of the tissue distribution of eravacycline in rabbits. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.00275-18.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Connors KP, Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–8.

    Article  Google Scholar 

  12. Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–86.

    Article  CAS  Google Scholar 

  13. Nation RL, Theuretzbacher U, Tsuji BT, International Society of Anti-Infective Pharmacology (ISAP). Concentration-dependent plasma protein binding: expect the unexpected. Eur J Pharm Sci. 2018;122:341–6.

    Article  CAS  Google Scholar 

  14. Newman JV, Zhou J, Izmailyan S, Tsai L. Randomized, double-blind, placebo-controlled studies of the safety and pharmacokinetics of single and multiple ascending doses of eravacycline. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.01174-18.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thabit AK, Monogue ML, Newman JV, Nicolau DP. Assessment of in vivo efficacy of eravacycline against Enterobacteriaceae exhibiting various resistance mechanisms: a dose-ranging study and pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2018;51(5):727–32.

    Article  CAS  Google Scholar 

  16. Daoud Z, Farah J, Sokhn ES, El Kfoury K, Dahdouh E, Masri K, et al. Multidrug-resistant Enterobacteriaceae in Lebanese Hospital wastewater: implication in the one health concept. Microb Drug Resist. 2018;24(2):166–74.

    Article  CAS  Google Scholar 

  17. Bathoorn E, Tsioutis C, da Silva Voorham JM, Scoulica EV, Ioannidou E, Zhou K, et al. Emergence of pan-resistance in KPC-2 carbapenemase-producing Klebsiella pneumoniae in Crete, Greece: a close call. J Antimicrob Chemother. 2016;71(5):1207–12.

    Article  CAS  Google Scholar 

  18. Sheng ZK, Li JJ, Sheng GP, Sheng JF, Li LJ. Emergence of Klebsiella pneumoniae carbapenemase-producing Proteus mirabilis in Hangzhou, China. Chin Med J (Engl). 2010;123(18):2568–70.

    Google Scholar 

  19. Newman JV, Zhou J, Izmailyan S, Tsai L. Mass balance and drug interaction potential of intravenous eravacycline administered to healthy subjects. Antimicrob Agents Chemother. 2019;63:3. https://doi.org/10.1128/aac.01810-18.

    Article  CAS  Google Scholar 

  20. Roffey SJ, Obach RS, Gedge JI, Smith DA. What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabeled drugs. Drug Metab Rev. 2007;39(1):17–43.

    Article  CAS  Google Scholar 

  21. Koulenti D, Song A, Ellingboe A, Abdul-Aziz MH, Harris P, Gavey E, et al. Infections by multidrug-resistant Gram-negative bacteria: what’s new in our arsenal and what’s in the pipeline? Int J Antimicrob Agents. 2019;53(3):211–24.

    Article  CAS  Google Scholar 

  22. Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):403–16.

    Article  CAS  Google Scholar 

  23. Zheng JX, Lin ZW, Sun X, Lin WH, Chen Z, Wu Y, et al. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):139.

    PubMed  PubMed Central  Google Scholar 

  24. Honore PM, Spapen HD. Eravacycline for treatment of complicated intra-abdominal infections: the fire is not ignited! Ann Transl Med. 2017;5(21):425.

    Article  Google Scholar 

  25. Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A, Tsai L, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152(3):224–32.

    Article  Google Scholar 

  26. Bassetti M, Righi E. Eravacycline for the treatment of intra-abdominal infections. Expert Opin Investig Drugs. 2014;23(11):1575–84.

    Article  CAS  Google Scholar 

  27. Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A, Evans D, et al. IGNITE4: results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs. meropenem in the treatment of complicated intra-abdominal infections. Clin Infect Dis. 2018. https://doi.org/10.1093/cid/ciy1029.

    Article  PubMed Central  Google Scholar 

  28. Tripathi PC, Gajbhiye SR, Agrawal GN. Clinical and antimicrobial profile of Acinetobacter spp.: an emerging nosocomial superbug. Adv Biomed Res. 2014;3:13.

    Article  Google Scholar 

  29. Mohammed N, Savardekar AR, Patra DP, Narayan V, Nanda A. The 21st-century challenge to neurocritical care: the rise of the superbug Acinetobacter baumannii: a meta-analysis of the role of intrathecal or intraventricular antimicrobial therapy in reduction of mortality. Neurosurg Focus. 2017;43(5):E8.

    Article  Google Scholar 

  30. Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. Int J Antimicrob Agents. 2018;51(1):62–4.

    Article  CAS  Google Scholar 

  31. Raz-Pasteur A, Liron Y, Amir-Ronen R, Abdelgani S, Ohanyan A, Geffen Y, et al. Trimethoprim-sulfamethoxazole vs. colistin or ampicillin-sulbactam for the treatment of carbapenem-resistant Acinetobacter baumannii: a retrospective matched cohort study. J Glob Antimicrob Resist. 2018. https://doi.org/10.1016/j.jgar.2018.12.001.

    Article  PubMed  Google Scholar 

  32. Zhang F, Bai B, Xu GJ, Lin ZW, Li GQ, Chen Z, et al. Eravacycline activity against clinical S. aureus isolates from China: in vitro activity, MLST profiles and heteroresistance. BMC Microbiol. 2018;18(1):211.

    Article  CAS  Google Scholar 

  33. Poulakou G, Lagou S, Karageorgopoulos DE, Dimopoulos G. New treatments of multidrug-resistant Gram-negative ventilator-associated pneumonia. Ann Transl Med. 2018;6(21):423.

    Article  CAS  Google Scholar 

  34. Mancini S, Kieffer N, Poirel L, Nordmann P. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2017;88(4):293–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. McCarthy.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of Interest

Matthew W. McCarthy has no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, M.W. Clinical Pharmacokinetics and Pharmacodynamics of Eravacycline. Clin Pharmacokinet 58, 1149–1153 (2019). https://doi.org/10.1007/s40262-019-00767-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00767-z

Navigation