Skip to main content
Log in

High Doses of Δ9-Tetrahydrocannabinol Might Impair Irinotecan Chemotherapy: A Review of Potentially Harmful Interactions

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

This review proposes the hypothesis that the effectiveness of irinotecan chemotherapy might be impaired by high doses of concomitantly administered Δ9-tetrahydrocannabinol (THC). The most important features shared by irinotecan and THC, which might represent sources of potentially harmful interactions are: first-pass hepatic metabolism mediated by cytochrome P450 (CYP) enzyme CYP3A4; glucuronidation mediated by uridine diphosphate glycosyltransferase (UGT) enzymes, isoforms 1A1 and 1A9; transport of parent compounds and their metabolites via canalicular ATP-binding cassette (ABC) transporters ABCB1 and ABCG2; enterohepatic recirculation of both parent compounds, which leads to an extended duration of their pharmacological effects; possible competition for binding to albumin; butyrylcholinesterase (BChE) inhibition by THC, which might impair the conversion of parent irinotecan into the SN-38 metabolite; mutual effects on mitochondrial dysfunction and induction of oxidative stress; potentiation of hepatotoxicity; potentiation of genotoxicity and cytogenetic effects leading to genome instability; possible neurotoxicity; and effects on bilirubin. The controversies associated with the use of highly concentrated THC preparations with irinotecan chemotherapy are also discussed. Despite all of the limitations, the body of evidence provided here could be considered relevant for human-risk assessments and calls for concern in cases when irinotecan chemotherapy is accompanied by preparations rich in THC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Engels FK, de Jong FA, Sparreboom A, Mathot RAA, Loos WJ, Kitzen JJEM, et al. Medicinal cannabis does not influence the clinical pharmacokinetics of irinotecan and docetaxel. Oncologist. 2007;12:291–300.

    CAS  PubMed  Google Scholar 

  2. Machado Rocha F, Stéfano S, De Cássia HR, Rosa Oliveira L, Da Silveira D. Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care (Engl). 2008;17:431–43.

    CAS  Google Scholar 

  3. Hazekamp A, Heerdink E. The prevalence and incidence of medicinal cannabis on prescription in The Netherlands. Eur J Clin Pharmacol. 2013;69:1575–80.

    PubMed  Google Scholar 

  4. Beaulieu P, Boulanger A, Desroches J, Clark A. Medical cannabis: considerations for the anesthesiologist and pain physician. J Can Anesth. 2016;63:608–24.

    Google Scholar 

  5. Birdsall S, Birdsall T, Tims L. The use of medical marijuana in cancer. Curr Oncol Rep. 2016;18:40.

    PubMed  Google Scholar 

  6. Savage S, Romero-Sandoval A, Schatman M, Wallace M, Fanciullo G, McCarberg B, et al. Cannabis in pain treatment: clinical and research considerations. J Pain. 2016;17:654–68.

    PubMed  Google Scholar 

  7. Badowski ME. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: a focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother Pharmacol. 2017;80:441–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Blake A, Wan B, Malek L, DeAngelis C, Diaz P, Lao N, et al. A selective review of medical cannabis in cancer pain management. Ann Palliat Med. 2017;6:S215–S222.

    PubMed  Google Scholar 

  9. Bridgeman MB, Abazia DT. Medicinal cannabis: History, pharmacology, and implications for the acute care setting. P&T. 2017;42:180–8.

    Google Scholar 

  10. EMCDDA. Medical use of cannabis and cannabinoids [Internet]. 2018. https://www.emcdda.europa.eu/system/files/publications/10171/20185584_TD0618186ENN_PDF.pdf. Accessed 1 Jul 2020.

  11. MacCallum C, Russo E. Practical considerations in medical cannabis administration and dosing. Eur J Intern Med. 2018;49:12–9.

    CAS  PubMed  Google Scholar 

  12. Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev. 2014;46:86–95.

    CAS  PubMed  Google Scholar 

  13. Rock EM, Parker LA. Cannabinoids as potential treatment for chemotherapy-induced nausea and vomiting. Front Pharmacol. 2016;7:1–10.

    Google Scholar 

  14. Bouquié R, Deslandes G, Mazaré H, Cogné M, Mahé J, Grégoire M, et al. Cannabis and anticancer drugs: Societal usage and expected pharmacological interactions—a review. Fundam Clin Pharmacol. 2018;32:462–84.

    PubMed  Google Scholar 

  15. Guzmán M. Cannabis for the management of cancer symptoms: THC Version 2.0? Cannabis Cannabinoid Res. 2018;3:117–9.

    PubMed  PubMed Central  Google Scholar 

  16. Hazekamp A. An evaluation of the quality of medicinal grade cannabis in the Netherlands. Cannabinoids. 2006;1:1–9.

    Google Scholar 

  17. Romano L, Hazekamp A. Cannabis oil: chemical evaluation of an upcoming cannabis-based medicine. Cannabinoids. 2013;1:1–11.

    Google Scholar 

  18. Gloss D. An overview of products and bias in research. Neurotherapeutics. 2015;12:731–4.

    PubMed  PubMed Central  Google Scholar 

  19. Stogner J, Miller B. Assessing the dangers of “dabbing”: mere marijuana or harmful new trend? Pediatrics. 2015;136:454.

    Google Scholar 

  20. Chan A, Molloy L, Pertile J, Iglesias M. A review for Australian nurses: Cannabis use for anti-emesis among terminally ill patients in Australia. Aust J Adv Nurs. 2017;34:43–7.

    Google Scholar 

  21. McLaren J, Swift W, Dillon P, Allsop S. Cannabis potency and contamination: A review of the literature. Addiction. 2008;103:1100–9.

    PubMed  Google Scholar 

  22. Rella JG. Recreational cannabis use: pleasures and pitfalls. Cleve Clin J Med. 2015;82:765–72.

    PubMed  Google Scholar 

  23. Stockburger S. Forms of administration of cannabis and their efficacy. J Pain Manag. 2016;9:381–6.

    Google Scholar 

  24. Mathijssen RHJ, Van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, et al. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7:2182–94.

    CAS  PubMed  Google Scholar 

  25. Fujita KI, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol. 2015;21:12234–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fuchs C, Marshall J, Mitchell E, Wierzbicki R, Ganju V, Jeffery M, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol. 2007;25:4779–89.

    CAS  PubMed  Google Scholar 

  27. de Jong F, de Jonge M, Verweij J, Mathijssen R. Role of pharmacogenetics in irinotecan therapy. Cancer Lett. 2006;234:90–106.

    PubMed  Google Scholar 

  28. Chamseddine A, Ducreux M, Armand J, Paoletti X, Satar T, Paci A, et al. Intestinal bacterial β-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol Ther. 2019;199:1–15.

    CAS  PubMed  Google Scholar 

  29. Fujii H, Hirata T, Mura T, Okada Y, Tashiro H. Relation between irinotecan induced cholinergic syndrome and prognosis of colorectal cancer patients. J Clin Oncol. 2018;36:859.

    Google Scholar 

  30. Kanbayashi Y, Ishikawa T, Kanazawa M, Nakajima Y, Tabuchi Y, Kawano R, et al. Predictive factors for the development of irinotecan-related cholinergic syndrome using ordered logistic regression analysis. Med Oncol. 2018;35:82.

    PubMed  Google Scholar 

  31. Tsuboya A, Fujita K, Kubota Y, Ishida H, Taki-Takemoto I, Kamei D, et al. Coadministration of cytotoxic chemotherapeutic agents with irinotecan is a risk factor for irinotecan-induced cholinergic syndrome in Japanese patients with cancer. Int J Clin Oncol. 2019;24:222–30.

    CAS  PubMed  Google Scholar 

  32. Fuchs C, Mitchell EP, Hoff PM. Irinotecan in the treatment of colorectal cancer. Cancer Treat Rev. 2006;32:491–503.

    CAS  PubMed  Google Scholar 

  33. Ribeiro RA, Wanderley CWS, Wong DVT, Mota JMSC, Leite CAVG, Souza MHLP, et al. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol. 2016;78:881–93.

    CAS  PubMed  Google Scholar 

  34. Li M, Seiser E, Baldwin R, Ramirez J, Ratain M, Innocenti F, et al. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharmacogenomics J. 2018;18:35–42.

    CAS  PubMed  Google Scholar 

  35. Prester L, Mikolić A, Jurič A, Fuchs N, Neuberg M, Lucić Vrdoljak A, et al. Effects of Δ9-tetrahydrocannabinol on irinotecan-induced clinical effects in rats. Chem Biol Interact. 2018;294:128–34.

    CAS  PubMed  Google Scholar 

  36. Hamano H, Mitsui M, Zamami Y, Takechi K, Nimura T, Okada N, et al. Irinotecan-induced neutropenia is reduced by oral alkalization drugs: analysis using retrospective chart reviews and the spontaneous reporting database. Support Care Cancer. 2019;27:849–56.

    PubMed  Google Scholar 

  37. Van Erp NPH, Baker SD, Zhao M, Rudek MA, Guchelaar HJ, Nortier JWR, et al. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin Cancer Res. 2005;11:7800–6.

    PubMed  Google Scholar 

  38. Mirkov S, Komoroski BJ, Ramírez J, Graber AY, Ratain MJ, Strom SC, et al. Effects of green tea compounds on irinotecan metabolism. Drug Metab Dispos. 2007;35:228–33.

    CAS  PubMed  Google Scholar 

  39. Lucić Vrdoljak A, Fuchs N, Mikolić A, Žunec S, Brčić Karačonji I, Jurič A, et al. Irinotecan and ∆9-tetrahydrocannabinol interactions in rat liver: a preliminary evaluation using biochemical and genotoxicity markers. Molecules. 2018;23:1332.

    PubMed Central  Google Scholar 

  40. Gupta E, Safa AR, Wang X, Ratain MJ. Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res. 1996;56:1309–14.

    CAS  PubMed  Google Scholar 

  41. de Jong FA, van der Bol JM, Mathijssen RHJ, Loos WJ, Mathôt RAA, Kitzen JJEM, et al. Irinotecan chemotherapy during valproic acid treatment: pharmacokinetic interaction and hepatotoxicity. Cancer Biol Ther. 2007;6:1368–74.

    PubMed  Google Scholar 

  42. Bansal T, Mishra G, Jaggi M, Khar RK, Talegaonkar S. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur J Pharm Sci. 2009;36:580–90.

    CAS  PubMed  Google Scholar 

  43. De Marco S, Squilloni E, Vigna L, Bertagnolio M, Sternberg C. Irinotecan chemotherapy associated with transient dysarthria and aphasis. Ann Oncol. 2004;15:1147–8.

    PubMed  Google Scholar 

  44. Hamberg P, De Jong FA, Brandsma D, Verweij J, Sleijfer S. Irinotecan-induced central nervous system toxicity. Report on two cases and review of the literature. Acta Oncol (Madr). 2008;47:974–8.

    Google Scholar 

  45. Dressel AJ, Van Der Mijn JC, Aalders IJ, Rinkel RNPM, Van Der Vliet HJ. Irinotecan-induced dysarthria. Case Rep Oncol. 2012;5:47–51.

    PubMed  PubMed Central  Google Scholar 

  46. Chandar M, de Wilton MR. Severe generalized weakness, paralysis, and aphasia following administration of irinotecan and oxaliplatin during FOLFIRINOX chemotherapy. Case Rep Oncol. 2015;8:138–41.

    PubMed  PubMed Central  Google Scholar 

  47. Landgraf M, Bognar C, Bezerra Guerra R, Morais Borges A, Silva Picon F, Fernandes Silva G, et al. Temporary dysarthria induced by irinotecan-case report of this rare adverse event. J Pharm Pharmacol. 2017;5:636–41.

    Google Scholar 

  48. Sewitch MJ, Rajput Y. A literature review of complementary and alternative medicine use by colorectal cancer patients. Complement Ther Clin Pract. 2010;16:52–6.

    PubMed  Google Scholar 

  49. Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94.

    PubMed  Google Scholar 

  50. Calcaterra SL, Burnett-Hartman AN, Powers JD, Corley DA, McMullen CM, Pawloski PA, et al. A population-based survey to assess the association between cannabis and quality of life among colorectal cancer survivors. BMC Cancer. 2020;20:373.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Donovan KA, Chang YD, Oberoi-Jassal R, Rajasekhara S, Smith J, Haas M, et al. Relationship of cannabis use to patient-reported symptoms in cancer patients seeking supportive/palliative care. J Palliat Med. 2019;22:1191–5.

    PubMed  Google Scholar 

  52. Grotenhermen F. Clinical pharmacokinetics of cannabinoids. J Cannabis Ther. 2003;3:3–51.

    CAS  Google Scholar 

  53. Huestis MA. Pharmacokinetics and metabolism of the plant cannabinoids, Δ9-tetrahydrocannabinol, cannabidiol and cannabinol. Hum Exp Toxicol. 2005;168:657–90.

    CAS  Google Scholar 

  54. Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers. 2007;4:1770–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dryburgh L, Bolan N, Grof C, Galettis P, Schneider J, Lucas C, et al. Cannabis contaminants: sources, distribution, human toxicity and pharmacologic effects. Br J Pharmacol. 2018;84:2468–76.

    Google Scholar 

  56. Russell C, Rued S, Room R, Tyndal M, Fischer B. Routes of administration for cannabis use – basic prevalence and related health outcomes: a scoping review and synthesis. Int J Drug Policy. 2018;52:87–96.

    PubMed  Google Scholar 

  57. McGilveray IJ. Pharmacokinetics of cannabinoids. Pain Res Manag. 2005;10:15A–22A.

    PubMed  Google Scholar 

  58. Fanali G, Cao Y, Ascenzi P, Trezza V, Rubino T, Parolaro D, et al. Binding of Δ9-tetrahydrocannabinol and diazepam to human serum albumin. IUBMB Life. 2011;63:446–51.

    CAS  PubMed  Google Scholar 

  59. Sharma P, Murthy P, Bharath MMS. Chemistry, metabolism, and toxicology of cannabis: clinical implications. Iran J Psychiatry. 2012;7:149–56.

    PubMed  PubMed Central  Google Scholar 

  60. Gunasekaran N, Long LE, Dawson BL, Hansen GH, Richardson DP, Li KM, et al. Reintoxication: the release of fat-stored Δ9- tetrahydrocannabinol (THC) into blood is enhanced by food deprivation or ACTH exposure. Br J Pharmacol. 2009;158:1330–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jamontt JM, Molleman A, Pertwee RG, Parsons ME. The effects of Δ9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. Br J Pharmacol. 2010;160:712–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bland TM, Haining RL, Tracy TS, Callery PS. CYP2C-catalyzed delta(9)-tetrahydrocannabinol metabolism: kinetics, pharmacogenetics and interaction with phenytoin. Biochem Pharmacol. 2005;70:1096–103.

    CAS  PubMed  Google Scholar 

  63. Watanabe K, Yamaori S, Funahashi T, Kimura T, Yamamoto I. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80:1415–9.

    CAS  PubMed  Google Scholar 

  64. Mazur A, Lichti CF, Prather PL, Zielinska AK, Bratton SM, Gallus-Zawada A, et al. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos. 2009;37:1496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M. Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet. 2018;43:1–12.

    CAS  PubMed  Google Scholar 

  66. Grotenhermen F. Clinical pharmacodynamics of cannabinoids. J Cannabis Ther. 2004;4:29–78.

    CAS  Google Scholar 

  67. Zou S, Kumar U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018;19:833.

    PubMed Central  Google Scholar 

  68. Takano M, Sugiyama T. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenomics Pers Med. 2017;10:61–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith NF, Figg WD, Sparreboom A. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol Vitr. 2006;20:163–75.

    CAS  Google Scholar 

  70. Arimori K, Kuroki N, Kumamoto A, Tanoue N, Nakano M, Kumazawa E, et al. Excretion into gastrointestinal tract of irinotecan lactone and carboxylate forms and their pharmacodynamics in rodents. Pharm Res. 2001;18:814–22.

    CAS  PubMed  Google Scholar 

  71. de Man F, Goey A, van Schaik R, Mathijssen R, Bins S. Individualization of irinotecan treatment: A review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57:1229–544.

    PubMed  PubMed Central  Google Scholar 

  72. Combes O, Barré J, Duché J, Vernillet L, Archimbaud Y, Marietta M, et al. In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Invest New Drugs. 2000;18:1–5.

    CAS  PubMed  Google Scholar 

  73. Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res. 2017;7:2350–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Santos A, Zanetta S, Cresteil T, Deroussent A, Pein F, Raymond E, et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000;6:2012–20.

    CAS  PubMed  Google Scholar 

  75. Kweekel D, Guchelaar HJ, Gelderblom H. Clinical and pharmacogenetic factors associated with irinotecan toxicity. Cancer Treat Rev. 2008;34:656–69.

    CAS  PubMed  Google Scholar 

  76. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Cancer Chemother Pharmacol. 1998;42:S31–43.

    CAS  PubMed  Google Scholar 

  77. Nielsen D, Palshof J, Brünner N, Stenvang J, Viuff B. Implications of ABCG2 expression on irinotecan treatment of colorectal cancer patients: a review. Int J Mol Sci. 2017;18:1926.

    PubMed Central  Google Scholar 

  78. Yamamoto M, Kurita A, Asahara T, Takakura A, Katono K, Iwasaki M, et al. Metabolism of irinotecan and its active metabolite SN-38 by intestinal microflora in rats. Oncol Rep. 2008;20:727–30.

    CAS  PubMed  Google Scholar 

  79. Takakura A, Kurita A, Asahara T, Yokoba M, Yamamoto M, Ryuge S, et al. Rapid deconjugation of SN-38 glucuronide and adsorption of released free SN-38 by intestinal microorganisms in rat. Oncol Lett. 2012;3:520–4.

    CAS  PubMed  Google Scholar 

  80. Brown JD. Potential adverse drug events with tetrahydrocannabinol (THC) due to drug–drug interactions. J Clin Med. 2020;9:919.

    CAS  PubMed Central  Google Scholar 

  81. Seely D, Oneschuk D. Interactions of natural health products with biomedical cancer treatments. Curr Oncol. 2008;15(Suppl 2):S81–S8686.

    Google Scholar 

  82. Dinis-Oliveira RJ. Metabolomics of Δ9-tetrahydrocannabinol: Implications in toxicity. Drug Metab Rev. 2016;48:80–7.

    CAS  PubMed  Google Scholar 

  83. Kamisako T, Kobayashi Y, Takeuchi K, Ishihara T, Higuchi K, Tanaka Y, et al. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol. 2000;35:659–64.

    CAS  PubMed  Google Scholar 

  84. Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol Pharmacol. 2004;66:773–9.

    CAS  PubMed  Google Scholar 

  85. Memon N, Weinberger B, Hegyi T, Aleksunes L. Inherited disorders of bilirubin clearance. Pediatr Res. 2016;79:378–86.

    CAS  PubMed  Google Scholar 

  86. Chu XY, Kato Y, Sugiyama Y. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 1997;57:1934–8.

    CAS  PubMed  Google Scholar 

  87. Sugiyama Y, Kato Y, Chu X. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol. 1998;42(Suppl):S44–S49.

    CAS  PubMed  Google Scholar 

  88. Holland ML, Lau DTT, Allen JD, Arnold JC. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol. 2007;152:815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu H-J, Wang J-S, Markowitz JS, Donovan JL, Gibson BB, Gefroh HA, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther. 2006;317:850–7.

    CAS  PubMed  Google Scholar 

  90. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006;44:778–87.

    CAS  PubMed  Google Scholar 

  91. Iyer L, Ramírez J, Shepard DR, Bingham CM, Hossfeld DK, Ratain MJ, et al. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother Pharmacol. 2002;49:336–41.

    CAS  PubMed  Google Scholar 

  92. Horikawa M, Kato Y, Sugiyama Y. Reduced gastrointestinal toxicity following inhibition of the biliary excretion of irinotecan and its metabolites by probenecid in rats. Pharm Res. 2002;19:1345–53.

    CAS  PubMed  Google Scholar 

  93. Chen S, Sutiman N, Zhenxian Zhang C, Yu Y, Lam S, Chuen Khor C, et al. Pharmacogenetics of irinotecan, doxorubicin and docetaxel transporters in Asian and Caucasian cancer patients: a comparative review. Drug Metab Rev. 2016;48:502–40.

    CAS  PubMed  Google Scholar 

  94. Fabritius M, Staub C, Mangin P, Giroud C. Distribution of free and conjugated cannabinoids in human bile samples. Forensic Sci Int. 2012;223:114–8.

    CAS  PubMed  Google Scholar 

  95. Schwilke EW, Schwope DM, Karschner EL, Lowe RH, Darwin WD, Kelly DL, et al. Δ9-tetrahydrocannabinol (THC), 11-hydroxy-THC, and 11-nor-9-carboxy-THC plasma pharmacokinetics during and after continuous high-dose oral THC. Clin Chem. 2009;55:2180–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Skopp G, Pötsch L, Mauden M, Richter B. Partition coefficient, blood to plasma ratio, protein binding and short-term stability of 11-nor-Δ9-carboxy tetrahydrocannabinol glucuronide. Forensic Sci Int. 2002;126:17–23.

    CAS  PubMed  Google Scholar 

  97. Burney M, Mosley S, Gonzalez A, Smith J. Evaluation of potential cytochrome P450 and plasma protein binding drug interactions for the class of camptothecins. Pharm Pharmacol Int J. 2016;4:98.

    Google Scholar 

  98. Roy-Chowdhury N, Roy-Chowdhury J. Bilirubin metabolism. 2016;1–13.

  99. Erlinger S, Arias IM, Dhumeaux D. Inherited disorders of bilirubin transport and conjugation: New insights into molecular mechanisms and consequences. Gastroenterology. 2014;146:1625–38.

    CAS  PubMed  Google Scholar 

  100. Wasserman E, Myara A, Lokiec F, Goldwasser F, Trivin F, Mahjoubi M, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 1997;8:1049–51.

    CAS  PubMed  Google Scholar 

  101. Morton CL, Wadkins RM, Danks MK, Potter PM. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 1999;59:1458–63.

    CAS  PubMed  Google Scholar 

  102. Xu J, Qiu J-C, Ji X, Guo H-L, Wang X, Zhang B, et al. Potential pharmacokinetic herb-drug interactions: Have we overlooked the importance of human carboxylesterases 1 and 2? Curr Drug Metab. 2018;20:130–7.

    Google Scholar 

  103. Qian Y, Wang X, Markowitz JS. In vitro inhibition of carboxylesterase 1 by major cannabinoids and selected metabolites. Drug Metab Dispos. 2019;47:465–72.

    CAS  PubMed  Google Scholar 

  104. Qian Y, Gurley BJ, Markowitz JS. The potential for pharmacokinetic interactions between cannabis products and conventional medications. J Clin Psychopharmacol. 2019;39:462–71.

    CAS  PubMed  Google Scholar 

  105. Abdel-Salam OME, Youness ER, Khadrawy YA, Sleem AA. Acetylcholinesterase, butyrylcholinesterase and paraoxonase 1 activities in rats treated with cannabis, tramadol or both. Asian Pac J Trop Med. 2016;9:1089–94.

    CAS  PubMed  Google Scholar 

  106. Schumacher J, Guo G. Mechanistic review of drug-induced steatohepatitis. Toxicol Appl Pharmacol. 2015;289:40–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sarafian TA, Kouyoumjian S, Khoshaghideh F, Tashkin DP, Roth MD. Δ9-Tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Cell Mol Physiol. 2003;284:L298–306.

    CAS  Google Scholar 

  108. Fišar Z, Singh N, Hroudová J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett. 2014;231:62–71.

    PubMed  Google Scholar 

  109. Wolff V, Schlagowski A-I, Rouyer O, Charles A-L, Singh F, Auger C, et al. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: A potential mechanism involved in cannabis-related stroke. Biomed Res Int. 2015;2015:323706.

    PubMed  PubMed Central  Google Scholar 

  110. Labbe G, Pessayre D, Fromenty B. Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fundam Clin Pharmacol. 2008;22:335–53.

    CAS  PubMed  Google Scholar 

  111. Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006;5:145–52.

    Google Scholar 

  112. Massart J, Begriche K, Buron N, Porceddu M, Borgne-Sanchez A, Fromenty B. Drug-induced inhibition of mitochondrial fatty acid oxidation and steatosis. Curr Pathobiol Rep. 2013;1:147–57.

    Google Scholar 

  113. Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol. 2011;54:773–94.

    CAS  PubMed  Google Scholar 

  114. McWhirter D, Kitteringham N, Jones RP, Malik H, Park K, Palmer D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit Rev Oncol Hematol. 2013;88:404–15.

    PubMed  Google Scholar 

  115. Costa MLV, Lima RCP, Aragão KS, Medeiros RP, Marques-Neto RD, De Sá GL, et al. Chemotherapy-associated steatohepatitis induced by irinotecan: a novel animal model. Cancer Chemother Pharmacol. 2014;74:711–20.

    CAS  PubMed  Google Scholar 

  116. Grigorian A, O’Brien CB. Hepatotoxicity secondary to chemotherapy. J Clin Transl Hepatol. 2014;2:95–102.

    PubMed  PubMed Central  Google Scholar 

  117. Celik S, Kartal K, Ozseker H, Hayran M, Hamaloglu E. Hepatoprotective effect of pioglitazone in cases of chemotherapy induced steatohepatitis. Chir. 2015;110:49–55.

    CAS  Google Scholar 

  118. Sawano T, Shimizu T, Yamada T, Nanashima N, Miura T, Morohashi S, et al. Fatty acid synthase-positive hepatocytes and subsequent steatosis in rat livers by irinotecan. Oncol Rep. 2015;33:2151–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Marcolino Assis-Júnior E, Melo AT, Pereira VBM, Wong DVT, Sousa NRP, Oliveira CMG, et al. Dual effect of silymarin on experimental non-alcoholic steatohepatitis induced by irinotecan. Toxicol Appl Pharmacol. 2017;327:71–9.

    PubMed  Google Scholar 

  120. Hézode C, Zafrani ES, Roudot-Thoraval F, Costentin C, Hessami A, Bouvier-Alias M, et al. Daily cannabis use: A novel risk factor of steatosis severity in patients with chronic hepatitis C. Gastroenterology. 2008;134:432–9.

    PubMed  Google Scholar 

  121. Purohit V, Rapaka R, Shurtleff D. Role of cannabinoids in the development of fatty liver (steatosis). AAPS J. 2010;12:233–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kontek R, Drozda R, Śliwiński M, Grzegorczyk K. Genotoxicity of irinotecan and its modulation by vitamins A, C and E in human lymphocytes from healthy individuals and cancer patients. Toxicol Vitr. 2010;24:417–24.

    CAS  Google Scholar 

  123. Wood J, Smith A, Bowman K, Thomas A, Jones G. Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in vitro and in vivo. Cancer Med. 2015;4:1309–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Barth SW, Briviba K, Watzl B, Jäger N, Marko D, Esselen M. In vivo bioassay to detect irinotecan-stabilized DNA/topoisomerase I complexes in rats. Biotechnol J. 2010;5:321–7.

    CAS  PubMed  Google Scholar 

  125. Horvat Knežević A, Đikić D, Lisičić D, Kopjar N, Oršolić N, Karabeg S, et al. Synergistic effects of irinotecan and flavonoids on Ehrlich ascites tumour-bearing mice. Basic Clin Pharmacol Toxicol. 2011;109:343–9.

    Google Scholar 

  126. Attia S. Modulation of irinotecan-induced genomic DNA damage by theanine. Food Chem Toxicol. 2012;50:1749–54.

    CAS  PubMed  Google Scholar 

  127. Lucić Vrdoljak A, Berend S, Želježić D, Piljac-Žegarac J, Pleština S, Kuča K, et al. Irinotecan side effects relieved by the use of HI-6 oxime: In vivo experimental approach. Basic Clin Pharmacol Toxicol. 2009;105:401–9.

    Google Scholar 

  128. Kopjar N, Želježić D, Lucić Vrdoljak A, Radić B, Ramić S, Milić M, et al. Irinotecan toxicity to human blood cells in vitro: relationship between various biomarkers. Basic Clin Pharmacol Toxicol. 2007;100:403–13.

    CAS  PubMed  Google Scholar 

  129. Reece AS, Hulse GK. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res Fundam Mol Mech Mutagen. 2016;789:15–25.

    CAS  Google Scholar 

  130. Kopjar N, Fuchs N, Žunec S, Mikolić A, Micek V, Kozina G, et al. DNA damaging effects, oxidative stress responses and cholinesterase activity in blood and brain of Wistar rats exposed to Δ9-tetrahydrocannabinol. Molecules. 2019;24:1560.

    CAS  PubMed Central  Google Scholar 

  131. Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O. The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol. 2011;163:1391–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Campbell J, Stephenson M, Bateman E, Peters M, Keefe D, Bowen J. Irinotecan-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. Pharmacogenomics J. 2017;17:21–8.

    CAS  PubMed  Google Scholar 

  133. Nejati M, Sadeghi A, Darakhshandeh A, Sharifi M, Moghaddas A. Comprehensive look toward irinotecan toxicity based on genetic differences, concerning UGT1A1. Austin Oncol. 2018;3:1018.

    Google Scholar 

  134. Maurer HH, Sauer C, Theobald DS. Toxicokinetics of drugs of abuse: Current knowledge of the isoenzymes involved in the human metabolism of tetrahydrocannabinol, cocaine, heroin, morphine, and codeine. Ther Drug Monit. 2006;28:447–53.

    CAS  PubMed  Google Scholar 

  135. Cox EJ, Maharao N, Patilea-Vrana G, Unadkat JD, Rettie AE, McCune JS, et al. A marijuana-drug interaction primer: Precipitants, pharmacology, and pharmacokinetics. Pharmacol Ther. 2019;201:25–38.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The literature search and data analysis were performed by Nino Fuchs, Suzana Žunec, Anja Katić and Goran Kozina. The first draft of the manuscript was written by Nevenka Kopjar, Irena Brčić Karačonji and Ana Lucić Vrdoljak and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Irena Brčić Karačonji.

Ethics declarations

Funding

No funding was received.

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopjar, N., Fuchs, N., Brčić Karačonji, I. et al. High Doses of Δ9-Tetrahydrocannabinol Might Impair Irinotecan Chemotherapy: A Review of Potentially Harmful Interactions. Clin Drug Investig 40, 775–787 (2020). https://doi.org/10.1007/s40261-020-00954-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-020-00954-y

Navigation