Skip to main content
Log in

Second-Generation C5 Inhibitors for Paroxysmal Nocturnal Hemoglobinuria

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The C5 targeting monoclonal antibody eculizumab has changed the natural history of paroxysmal nocturnal hemoglobinuria (PNH) in the last 10 years. However, some unmet clinical needs persist, including persistent anemia with some patients requiring transfusions, incomplete C5 inhibition with breakthrough hemolysis (because of pharmacokinetic or pharmacodynamic issues such as infections, as well as conditions increasing complement activity), the underlying bone marrow failure, and the significant burden on patient quality of life (intravenous route of administration and frequency of infusions). Moreover, a subclass of patients carries C5 polymorphisms resistant to eculizumab inhibition. Several second-generation C5 inhibitors are under active study to overcome unmet clinical needs with eculizumab. Current strategies encompass increasing drug half‐life, developing small molecule inhibitors of C5, and exploring new routes of administration (including subcutaneous and oral agents). In this review, we summarize available data on second-generation C5 inhibitors in PNH, including novel monoclonal antibodies, a small interfering RNA, and small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parker CJ. Update on the diagnosis and management of paroxysmal nocturnal hemoglobinuria. Hematol Am Soc Hematol Educ Program. 2016;2016(1):208–16.

    Article  Google Scholar 

  2. Kinoshita T, Inoue N, Takeda J. Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria. Adv Immunol. 1995;60:57–103.

    Article  CAS  PubMed  Google Scholar 

  3. Parker CJ. Hemolysis in PNH. In: Young NS, Moss J, editors. Paroxysmal nocturnal hemoglobinuria and the glycosylphosphatidylinositol-linked proteins. San Diego: Academic Press; 2000. p. 49–100.

    Google Scholar 

  4. Inoue N, Izui-Sarumaru T, Murakami Y, et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood. 2006;108(13):4232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Endo M, Ware RE, Vreeke TM, et al. Molecular basis of the heterogeneity of expression of glycosyl phosphatidylinositol anchored proteins in paroxysmal nocturnal hemoglobinuria. Blood. 1996;87(6):2546–57.

    Article  CAS  PubMed  Google Scholar 

  6. Dezern AE, Borowitz MJ. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 1—clinical utility. Cytometry B Clin Cytom. 2018;94:16–22.

    Article  CAS  PubMed  Google Scholar 

  7. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet. 2009;373(9665):759–67.

    Article  CAS  PubMed  Google Scholar 

  8. Brodsky RA, Young NS, Antonioli E, et al. Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria. Blood. 2008;111(4):1840–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hillmen P, Hall C, Marsh JC, et al. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2004;350(6):552–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12):1233–43.

    Article  CAS  PubMed  Google Scholar 

  11. Kelly RJ, Hill A, Arnold LM, et al. Long-term treatment with eculizumab in paroxysmal nocturnal hemoglobinuria: sustained efficacy and improved survival. Blood. 2011;117(25):6786–92.

    Article  CAS  PubMed  Google Scholar 

  12. Loschi M, Porcher R, Barraco F, et al. Impact of eculizumab treatment on paroxysmal nocturnal hemoglobinuria: a treatment versus no-treatment study. Am J Hematol. 2016;91(4):366–70.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly RJ, Hochsmann B, Szer J, et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2015;373(11):1032–9.

    Article  CAS  PubMed  Google Scholar 

  14. Berzuini A, Montanelli F, Prati D. Hemolytic anemia after eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2010;363(10):993–4.

    Article  CAS  PubMed  Google Scholar 

  15. Risitano AM, Notaro R, Luzzatto L, Hill A, Kelly R, Hillmen P. Paroxysmal nocturnal hemoglobinuria–hemolysis before and after eculizumab. N Engl J Med. 2010;363(23):2270–2.

    Article  CAS  PubMed  Google Scholar 

  16. Risitano AM, Notaro R, Marando L, et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood. 2009;113(17):4094–100.

    Article  CAS  PubMed  Google Scholar 

  17. Mastellos DC, Ricklin D, Yancopoulou D, Risitano A, Lambris JD. Complement in paroxysmal nocturnal hemoglobinuria: exploiting our current knowledge to improve the treatment landscape. Expert Rev Hematol. 2014;7(5):583–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.

    Article  CAS  PubMed  Google Scholar 

  19. Luzzatto L. Recent advances in the pathogenesis and treatment of paroxysmal nocturnal hemoglobinuria. F1000Res. 2016;5. https://doi.org/10.12688/f1000research.7288.1

  20. Rondelli T, Risitano AM, Peffault de Latour R, et al. Polymorphism of the complement receptor 1 gene correlates with the hematologic response to eculizumab in patients with paroxysmal nocturnal hemoglobinuria. Haematologica. 2014;99(2):262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zelek WM, Xie L, Morgan BP, Harris CL. Compendium of current complement therapeutics. Mol Immunol. 2019;114:341–52.

    Article  CAS  PubMed  Google Scholar 

  22. Harder MJ, Kuhn N, Schrezenmeier H, et al. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood. 2017;129(8):970–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harder MJ, Höchsmann B, Dopler A, et al. Different levels of incomplete terminal pathway inhibition by eculizumab and the clinical response of PNH patients. Front Immunol. 2019;18(10):1639.

    Article  CAS  Google Scholar 

  24. Griffin M, Kulasekararaj A, Gandhi S, et al. Concurrent treatment of aplastic anemia/paroxysmal nocturnal hemoglobinuria syndrome with immunosuppressive therapy and eculizumab: a UK experience. Haematologica. 2018;103(8):e345–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu L, Liu S, Zhang Y, et al. Excellent outcomes of allogeneic hematopoietic stem cell transplantation in patients with paroxysmal nocturnal hemoglobinuria: a single-center study. Biol Blood Marrow Transplant. 2019;25(8):1544–9.

    Article  PubMed  Google Scholar 

  26. Socié G, Caby-Tosi MP, Marantz JL, et al. Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br J Haematol. 2019;185(2):297–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Risitano AM, Marotta S. Toward complement inhibition 2.0: next generation anticomplement agents for paroxysmal nocturnal hemoglobinuria. Am J Hematol. 2018;93(4):564–77.

    Article  PubMed  Google Scholar 

  28. Risitano AM, Marotta S, Ricci P, et al. Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: time for Proximal Complement Inhibition? A position paper from the SAAWP of the EBMT. Front Immunol. 2019;14(10):1157.

    Article  CAS  Google Scholar 

  29. Sahelijo L, Mujeebuddin A, Mitchell D, et al. First in human singleascending dose study: safety, biomarker, pharmacokinetics and exposure-response relationships of ALXN1210, a humanized monoclonal antibody to C5, with marked half-life extension and potential for significantly longer dosing intervals. Blood. 2015;126(23):4777.

    Article  Google Scholar 

  30. Fukuzawa T, Sampei Z, Haraya K, et al. Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases. Sci Rep. 2017;7(1):1080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02534909. Accessed 5 Nov 2019

  32. Adienne Pharma & Biotech. 2014. http://www.adienne.com/en/rd/pipeline/mubodina®.html. Accessed 5 Nov 2019

  33. Borodovsky A, Yucius KK, Sprague A, et al. Development Of RNAi therapeutics targeting the complement pathway. Blood. 2013;122(21):2471.

    Article  Google Scholar 

  34. Nunn MA, Sharma A, Paesen GC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174(4):2084–91.

    Article  CAS  PubMed  Google Scholar 

  35. Weston-Davies WH, Nunn MA, Pinto FO, Mackie IJ, Richards SJ, Machin SJ, et al. Clinical and immunological characterisation of coversin, a novel small protein inhibitor of complement C5 with potential as a therapeutic agent in PNH and other complement mediated disorders. Blood. 2014;124:4280.

    Article  Google Scholar 

  36. Ueda Y, Osato M, Weston-Davies W, Nunn MA, Hayashi S, Nishimura J-I, et al. Coversin blocked in vitro hemolysis in an eculizumab-resistant PNH patient with the C5 polymorphism (c.2654G > A). Blood. 2015;126:2138.

    Article  Google Scholar 

  37. Josephson K, Ricardo A, Szostak JW. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today. 2014;19(4):388–99.

    Article  CAS  PubMed  Google Scholar 

  38. Ricardo A, Arata M, DeMarco S, et al. Development of RA101348, a potent cyclic peptide inhibitor of C5 for complement-mediated diseases. Blood. 2014;124:2936.

    Article  Google Scholar 

  39. Ricardo A, Arata M, DeMarco S, et al. Preclinical evaluation of RA101495, a potent cyclic peptide inhibitor of C5 for the treatment of paroxysmal nocturnal hemoglobinuria. Blood. 2015;126:939.

    Article  Google Scholar 

  40. Igawa T, Ishii S, Tachibana T, Maeda A, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol. 2010;28:1203–7.

    Article  CAS  PubMed  Google Scholar 

  41. Riedemann NC, Habel M, Ziereisen J, et al. Controlling the anaphylatoxin C5a in diseases requires a specifically targeted inhibition. Clin Immunol. 2017;180:25–32.

    Article  CAS  PubMed  Google Scholar 

  42. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized phase 1 clinical study. PLoS One. 2016;11(10):e0164646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ricardo A, Hoarty MD, Blain JC, DeMarco SJ, Galullo V, Hale MR, et al. Discovery of orally bioavailable small molecules for inhibition of complement C5. Haematologica. 2017;102:189.

    Google Scholar 

  44. Ricardo A, Hale M, Zhong M, Reves J, Savegh C, Sherry K, et al. Characterization or orally bioavailable small molecule inhibitirs of complement C5. Hemasphere. 2018;2:730.

    Google Scholar 

  45. Zhang L, Qiu W, Crooke S, Li Y, Abid A, Xu B, Finn MG, Lin F. Development of autologous C5 vaccine nanoparticles to reduce intravascular hemolysis in vivo. ACS Chem Biol. 2017;12(2):539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zelek WM, Taylor PR, Morgan BP. Development and characterization of novel anti-C5 monoclonal antibodies capable of inhibiting complement in multiple species. Immunology. 2019;157(4):283–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chow V, Pan J, Chien D, et al. PK and PD similarity of ABP 959 with eculizumab: results from a randomized double-blind, single-dose, parallel-group study in healthy subjects. EHA [Abstract]. 2019;3:125.

    Google Scholar 

  48. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03818607. Accessed 5 Nov 2019

  49. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT04058158. Accessed 5 Nov 2019

  50. Kulagin A, Ptushkin V, Lukina E, et al. Phase III clinical trial of elizaria and soliris in adult patients with paroxysmal nocturnal hemoglobinuria: results of comparative analysis of efficacy, safety, and pharmacological data. Blood. 2019;134(Supplement_1):3748.

    Article  Google Scholar 

  51. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://www.clinicaltrialsregister.eu/ctrsearch/search?query52017-001418-27. Accessed 5 Nov 2019

  52. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02598583. Accessed 5 Nov 2019

  53. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02605993. Accessed 5 Nov 2019

  54. Lee JW, Bachman E, Aguzzi R, et al. Immediate, complete, and sustained inhibition of C5 with ALXN1210 reduces complementmediated hemolysis in patients with paroxysmal nocturnal hemoglobinuria (PNH): interim analysis of a dose-escalation study. Blood. 2016;128(22):2428.

    Article  Google Scholar 

  55. Roeth A, Rottinghaus ST, Hill A, et al. Optimization of dose regimen for ALXN1210, a novel complement C5 inhibitor, in patients with paroxysmal nocturnal hemoglobinuria: results from 2 phase I/II studies. Blood. 2017;130:3482.

    Google Scholar 

  56. Lee JW, Sicre de Fontbrune F, Wong L, Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133(6):530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulasekararaj AG, Hill A, Rottinghaus ST, et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood. 2019;133(6):540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McKeage K. Ravulizumab: first global approval. Drugs. 2019;79(3):347–52.

    Article  CAS  PubMed  Google Scholar 

  59. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03748823. Accessed 5 Nov 2019

  60. Fukuzawa T, Sampei Z, Haraya K, Ruike Y, Shida-Kawazoe M, Shimizu Y, et al. Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases. Sci Rep. 2017;7:1080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sampei Z, Haraya K, Tachibana T, Fukuzawa T, Shida-Kawazoe M, Gan SW, et al. Antibody engineering to generate SKY59, a long-acting anti-C5 recycling antibody. PLoS One. 2018;13:e0209509.

    Article  PubMed  PubMed Central  Google Scholar 

  62. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03157635. Accessed 5 Nov 2019

  63. Roth A, Zsolt N, Egyed M, Winter E, Hsu J, Diechmann A, et al. The SMART-IgG Anti-hC5 antibody (SKY59/RO7112689) has favorable PK, PD, subcutaneous bioavailability, and safety profile in phase I HV study. Blood. 2017;130:4750.

    Google Scholar 

  64. Roth A, Egyed M, Ichikawa S, Kim JS, Nagy Z, Weisinger JG, et al. The SMART Anti-hC5 antibody (SKY59/RO7112689) shows good safety and efficacy in patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood. 2018;132:535.

    Article  Google Scholar 

  65. Weyne J, Ni Y, DelGizzi R, Godin S, Morton L, Prasad S, et al. A randomized, double-blind, placebo-controlled phase 1 study of the pharmacokinetics and pharmacodynamics of REGN3918, a human antibody against complement factor C5, in healthy volunteers. Blood. 2018;132:1039.

    Article  Google Scholar 

  66. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03946748. Accessed 5 Nov 2019

  67. Josephson K, Ricardo A, Szostak JW. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today. 2014;19:388–99.

    Article  CAS  PubMed  Google Scholar 

  68. Johnston J, Ricardo A, Arata M, Lickliter J, DeMarco S, Fahrner R, et al. A phase I single-ascending-dose clinical study of RA101495, a subcutaneously administered macrocyclic peptide inhibitor of complement C5 for treatment of paroxysmal nocturnal hemoglobinuria. Haematologica. 2016;101:347.

    Google Scholar 

  69. Johnston J, Ricardo A, Arata M, Lickliter J, DeMarco S, Fahrner R, et al. A phase I multiple-dose clinical study of RA101495, a subcutaneously administered macrocyclic peptide inhibitor of complement C5 for treatment of paroxysmal nocturnal hemoglobinuria. Haematologica. 2016;101:415.

    Article  Google Scholar 

  70. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03078582. Accessed 5 Nov 2019

  71. Hill A, Schrezenmeier H, Hillmen P, Szer J, Pullon H, Spearing R, et al. RA101495, a subcutaneously-administered peptide inhibitor of complement component C5, for the treatment of paroxysmal nocturnal hemoglobinuria: phase 2 results. Hemasphere. 2018;2:122.

    Google Scholar 

  72. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03225287. Accessed 5 Nov 2019

  73. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT03030183. Accessed 5 Nov 2019

  74. Nunn MA, Sharma A, Paesen GC, Adamson S, Lissina O, Willis AC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174:2084–91.

    Article  CAS  PubMed  Google Scholar 

  75. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02591862. Accessed 5 Nov 2019

  76. EU Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2016–002067-33. Accessed 5 Nov 2019

  77. Hill A, Windyga J, Robak T, Hellman A, Kulasekararaj A, Weston-Daview W, et al. Results of COBALT, a phase II clinical trial of coversin in PNH. Hemasphere. 2018;2:109.

    Google Scholar 

  78. EU Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2016–004129-18. Accessed 5 Nov 2019

  79. Borodovsky A, Yucius K, Sprague A, Butler J, Fishman S, Nguyen T, et al. Development Of RNAi therapeutics targeting the complement pathway. Blood. 2013;122:2471.

    Article  Google Scholar 

  80. Hill A, Taubel J, Bush J, Borodovsky A, Kawahata N, Mclean H, et al. A subcutaneously administered investigational RNAi therapeutic (ALN-CC5) targeting complement C5 for treatment of PNH and complement-mediated diseases: interim phase 1 study results. Blood. 2015;126:2413.

    Article  Google Scholar 

  81. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT02352493. Accessed 5 Nov 2019

  82. Hill A, Valls AG, Griffin M, Munir T, Borodovsky A, Kawahata N, et al. A subcutaneously administered investigational RNAi therapeutic (ALN-CC5) targeting complement C5 for treatment of PNH and complement-mediated diseases: preliminary phase 1/2 study results in patients with PNH. Blood. 2016;128:3891.

    Article  Google Scholar 

  83. Ricci P, Ricklin D, Lin Z, Schmidt CQ, Sica M, Lambris JD, et al. Effect of the compstatin analog Cp40 and of the recombinamt mini-factor H in an in vitro model of isoagglutinin-mediated hemolysis. In: 7th International conference on complement therapeutics. Olympia: Aegean Conferences Series; 2014. p. 82.

  84. EU Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2016–002943-40. Accessed 5 Nov 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin G. Kulasekararaj.

Ethics declarations

Funding

No sources of funding to declare.

Conflict of interest

AK received research support and received compensation for speakers’ bureau from Alexion, Novartis, and Celgene; received compensation for consultancy from Amgen, Ra Pharma and Achillion; received compensation for advisory boards from Akari, Alnylam, Celgene, Amgen, Ra Pharma, Alexion, and Novartis. BF received compensation for consultancy and advisory board from Apellis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattizzo, B., Kulasekararaj, A.G. Second-Generation C5 Inhibitors for Paroxysmal Nocturnal Hemoglobinuria. BioDrugs 34, 149–158 (2020). https://doi.org/10.1007/s40259-019-00401-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-019-00401-1

Navigation