Skip to main content
Log in

Current Status of HDAC Inhibitors in Cutaneous T-cell Lymphoma

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that are characterized by primary skin involvement. Mycosis fungoides (MF) and Sézary syndrome (SS), the two most common subtypes of CTCL, can be difficult to manage clinically as there are few effective treatment options available. Recently, histone deacetylase inhibitors (HDACi) have emerged as promising therapies with favorable adverse effect profiles, compared with traditional chemotherapies. In this article, we review the published literature to evaluate the role of HDACi in the treatment of CTCL. Specifically, we (1) briefly discuss the molecular rationale for the use of HDACi in CTCL; (2) compare the efficacy, tolerability, and adverse effects of HDACi; (3) review the cardiac safety data; and (4) discuss optimization of therapy with HDACi in the treatment of CTCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol. 2007;143(7):854–9.

    PubMed  Google Scholar 

  2. Scarisbrick JJ, et al. Prognostic factors, prognostic indices and staging in mycosis fungoides and Sezary syndrome: where are we now? Br J Dermatol. 2014;170(6):1226–36.

    CAS  PubMed  Google Scholar 

  3. Mangold AR, et al. Early clinical manifestations of Sezary syndrome: a multicenter retrospective cohort study. J Am Acad Dermatol. 2017;77(4):719–27.

    PubMed  Google Scholar 

  4. Olsen EA, et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2011;29(18):2598–607.

    PubMed  PubMed Central  Google Scholar 

  5. Kim YH, et al. Long-term outcome of 525 patients with mycosis fungoides and sézary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139(7):857–66.

    PubMed  Google Scholar 

  6. Kim YH, et al. Clinical stage IA (limited patch and plaque) mycosis fungoides. A long-term outcome analysis. Arch Dermatol. 1996;132(11):1309–13.

    CAS  PubMed  Google Scholar 

  7. Olsen E, et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22.

    CAS  PubMed  Google Scholar 

  8. Scarisbrick JJ, et al. Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis fungoides and sézary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol. 2015;33(32):3766–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Benton EC, et al. A cutaneous lymphoma international prognostic index (CLIPi) for mycosis fungoides and Sezary syndrome. Eur J Cancer. 2013;49(13):2859–68.

    CAS  PubMed  Google Scholar 

  10. Benner MF, et al. Prognostic factors in transformed mycosis fungoides: a retrospective analysis of 100 cases. Blood. 2012;119(7):1643–9.

    CAS  PubMed  Google Scholar 

  11. Trautinger F, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome—update 2017. Eur J Cancer. 2017;77(Suppl C):57–74.

    PubMed  Google Scholar 

  12. Geskin L, Malone DC. An exploratory cost-effectiveness analysis of systemic treatments for cutaneous T-cell lymphoma. J Dermatol Treat. 2018;29(5):522–30.

    CAS  Google Scholar 

  13. Duvic M, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II–III trial results. J Clin Oncol. 2001;19(9):2456–71.

    CAS  PubMed  Google Scholar 

  14. Olsen E, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19(2):376–88.

    CAS  PubMed  Google Scholar 

  15. Kohn EC, et al. Phase II trial of intermittent high-dose recombinant interferon alfa-2a in mycosis fungoides and the Sezary syndrome. J Clin Oncol. 1990;8(1):155–60.

    CAS  PubMed  Google Scholar 

  16. Chun P. Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res. 2015;38(6):933–49.

    CAS  PubMed  Google Scholar 

  17. Choi J, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ungewickell A, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van Doorn R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23(17):3886–96.

    PubMed  Google Scholar 

  20. Morales Suarez-Varela MM, et al. Mycosis fungoides: review of epidemiological observations. Dermatology. 2000;201(1):21–8.

    CAS  PubMed  Google Scholar 

  21. Mirvish ED, Pomerantz RG, Geskin LJ. Infectious agents in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2011;64(2):423–31.

    PubMed  Google Scholar 

  22. Hall WW, et al. Deleted HTLV-I provirus in blood and cutaneous lesions of patients with mycosis fungoides. Science. 1991;253(5017):317–20.

    CAS  PubMed  Google Scholar 

  23. Stutz N, Johnson RD, Wood GS. The Fas apoptotic pathway in cutaneous T-cell lymphomas: Frequent expression of phenotypes associated with resistance to apoptosis. J Am Acad Dermatol. 2012;67(6):1327.e1–1327.e10.

    Google Scholar 

  24. Contassot E, et al. Resistance to FasL and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in Sézary syndrome T-cells associated with impaired death receptor and FLICE-inhibitory protein expression. Blood. 2008;111(9):4780–7.

    CAS  PubMed  Google Scholar 

  25. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124(3):511–5.

    CAS  PubMed  Google Scholar 

  26. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118(Pt 2):265–7.

    CAS  PubMed  Google Scholar 

  27. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907.

    CAS  PubMed  Google Scholar 

  28. Wu J, et al. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Investig Dermatol. 2009;129(5):1165–73.

    CAS  PubMed  Google Scholar 

  29. Braun FK, et al. Blockade of death receptor-mediated pathways early in the signaling cascade coincides with distinct apoptosis resistance in cutaneous T-cell lymphoma cells. J Invest Dermatol. 2007;127(10):2425–37.

    CAS  PubMed  Google Scholar 

  30. Tracey L, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood. 2003;102(3):1042–50.

    CAS  PubMed  Google Scholar 

  31. Schindler C. Cytokines and JAK-STAT signaling. Exp Cell Res. 1999;253(1):7–14.

    CAS  PubMed  Google Scholar 

  32. Nielsen M, et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci U S A. 1997;94(13):6764–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Q, et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA. 1996;93(17):9148–53.

    CAS  PubMed  Google Scholar 

  34. Eriksen KW, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15(5):787–93.

    CAS  PubMed  Google Scholar 

  35. Levy DE, Lee CK. What does Stat3 do? J Clin Invest. 2002;109(9):1143–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sommer VH, et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia. 2004;18(7):1288–95.

    CAS  PubMed  Google Scholar 

  37. Brender C, et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001;97(4):1056–62.

    CAS  PubMed  Google Scholar 

  38. Vaque JP, et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood. 2014;123(13):2034–43.

    CAS  PubMed  Google Scholar 

  39. Johnsson AE, Wright AP. The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle. 2010;9(3):467–71.

    CAS  PubMed  Google Scholar 

  40. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92(15):1210–6.

    CAS  PubMed  Google Scholar 

  42. Plumb JA, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther. 2003;2(8):721–8.

    CAS  PubMed  Google Scholar 

  43. Zhang C, et al. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol. 2005;125(5):1045–52.

    CAS  PubMed  Google Scholar 

  44. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–93.

    CAS  PubMed  Google Scholar 

  45. Robbins AR, et al. Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle. 2005;4(5):717–26.

    CAS  PubMed  Google Scholar 

  46. Conti C, et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res. 2010;70(11):4470–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bolden JE, et al. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis. 2013;4:e519.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005;14(12):1497–511.

    CAS  PubMed  Google Scholar 

  49. Qin Y, et al. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sezary syndrome. J Invest Dermatol. 2012;132(5):1520–2.

    CAS  PubMed  Google Scholar 

  50. Mishra A, Garzon R. The (miR)e of CTCL. Blood. 2014;123(10):1438.

    CAS  PubMed  Google Scholar 

  51. Wong HK. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov Med. 2013;16(87):71–8.

    PubMed  Google Scholar 

  52. Ferrara G, et al. A specific DNA methylation profile correlates with a high risk of disease progression in stage I classical (Alibert-Bazin type) mycosis fungoides. Br J Dermatol. 2014;170(6):1266–75.

    CAS  PubMed  Google Scholar 

  53. Jones CL, et al. Downregulation of fas gene expression in sézary syndrome is associated with promoter hypermethylation. J Investig Dermatol. 2010;130(4):1116–25.

    CAS  PubMed  Google Scholar 

  54. Nagasawa T, et al. Fas gene mutations in mycosis fungoides: analysis of laser capture-microdissected specimens from cutaneous lesions. Oncology. 2004;67(2):130–4.

    CAS  PubMed  Google Scholar 

  55. Dereure O, et al. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol. 2002;118(6):949–56.

    CAS  PubMed  Google Scholar 

  56. Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009;15(12):3958–69.

    CAS  PubMed  Google Scholar 

  57. Glaser KB. HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol. 2007;74(5):659–71.

    CAS  PubMed  Google Scholar 

  58. Piekarz RL, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27(32):5410–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Therasse P, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.

    CAS  PubMed  Google Scholar 

  60. Cheson BD, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244.

    CAS  PubMed  Google Scholar 

  61. Bates SE, et al. Romidepsin in peripheral and cutaneous T-cell lymphoma: mechanistic implications from clinical and correlative data. Br J Haematol. 2015;170(1):96–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Whittaker SJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28(29):4485–91.

    CAS  PubMed  Google Scholar 

  63. Heald P. Clinical trials and efficacy assessment in the therapy of cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001;941:155–65.

    CAS  PubMed  Google Scholar 

  64. Stevens SR, et al. Quantifying skin disease burden in mycosis fungoides-type cutaneous T-cell lymphomas: the severity-weighted assessment tool (SWAT). Arch Dermatol. 2002;138(1):42–8.

    PubMed  Google Scholar 

  65. Edelson R, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med. 1987;316(6):297–303.

    CAS  PubMed  Google Scholar 

  66. Foss F, et al. clinical efficacy of romidepsin in tumor stage and folliculotropic mycosis fungoides. Clin Lymphoma Myeloma Leuk. 2016;16(11):637–43.

    PubMed  Google Scholar 

  67. Kim EJ, et al. Clinically significant responses achieved with romidepsin across disease compartments in patients with cutaneous T-cell lymphoma. Leuk Lymphoma. 2015;56(10):2847–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim YH, et al. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin. Leuk Lymphoma. 2013;54(2):284–9.

    CAS  PubMed  Google Scholar 

  69. Duvic M, et al. Responses to romidepsin in patients with cutaneous T-cell lymphoma and prior treatment with systemic chemotherapy. Leuk Lymphoma. 2018;59(4):800–87.

    Google Scholar 

  70. Duvic M, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Olsen EA, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.

    CAS  PubMed  Google Scholar 

  72. Duvic M, et al. The systemic effects of vorinostat in patients (Pts) with cutaneous T-cell lymphoma (CTCL): post-hoc analyses in pts with high blood tumor burden. Blood. 2009;114(22):1709.

    Google Scholar 

  73. Duvic M, et al. Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2009;9(6):412–6.

    PubMed  Google Scholar 

  74. Kim YH, et al. Anti-CCR4 monoclonal antibody, mogamulizumab, demonstrates significant improvement in PFS compared to vorinostat in patients with previously treated cutaneous T-cell lymphoma (CTCL): results from the phase III MAVORIC study. Blood. 2017;130(Suppl 1):817.

    Google Scholar 

  75. Foss F, et al. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168(6):811–9.

    CAS  PubMed  Google Scholar 

  76. Cheson BD, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86.

    PubMed  Google Scholar 

  77. Duvic M, et al. Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Cancer. 2013;49(2):386–94.

    CAS  PubMed  Google Scholar 

  78. Kim YH, et al. A phase 1b study in cutaneous T-cell lymphoma (CTCL) with the novel topically applied skin-restricted histone deacteylase inhibitor (HDAC-i) SHP-141. J Clin Oncol. 2014;32(15 Suppl):8525.

    Google Scholar 

  79. Duvic M, et al. A phase 2 randomized study of SHAPE Gel (SHP-141) in patients with early-stage cutaneous T-cell lymphoma: interim results. J Clin Oncol. 2016;34(15 Suppl):7562.

    Google Scholar 

  80. Brunetto AT, et al. First-in-human, pharmacokinetic and pharmacodynamic phase I study of Resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2013;19(19):5494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 4SC AG. Resminostat for maintenance treatment of patients with advanced stage mycosis fungoides (MF) or sézary syndrome (SS) (RESMAIN). 22 Nov 2017 [cited 8 Jan 2018]. ClinicalTrials.gov identifier: NCT02953301. https://clinicaltrials.gov/ct2/show/NCT02953301. Accessed 15 Feb 2018.

  82. Kelly WK, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 2005;23(17):3923–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kelly WK, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003;9(10 Pt 1):3578–88.

    CAS  PubMed  Google Scholar 

  84. Fischer T, et al. Results of cardiac monitoring during phase I trials of a novel histone deacetylase (HDAC) inhibitor LBH589 in patients with advanced solid tumors and hematologic malignancies. J Clin Oncol. 2005;23(16 Suppl):3106.

    Google Scholar 

  85. Rowinsky EK, et al. Cardiac monitoring in phase I trials of a novel histone deacetylase (HDAC) inhibitor LAQ824 in patients with advanced solid tumors and hematologic malignancies. J Clin Oncol. 2005;23(16 Suppl):3131.

    Google Scholar 

  86. Noonan AM, et al. Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for K(ATP) channel. Clin Cancer Res. 2013;19(11):3095–104.

    CAS  PubMed  Google Scholar 

  87. Cabell C, et al. Systematic assessment of potential cardiac effects of the novel histone deacetylase (HDAC) inhibitor romidepsin. Blood. 2009;114(22):3709.

    Google Scholar 

  88. Wolbrette DL. Drugs that cause Torsades de pointes and increase the risk of sudden cardiac death. Curr Cardiol Rep. 2004;6(5):379–84.

    PubMed  Google Scholar 

  89. Ponte ML, Keller GA, Di Girolamo G. Mechanisms of drug induced QT interval prolongation. Curr Drug Saf. 2010;5(1):44–53.

    CAS  PubMed  Google Scholar 

  90. Montgomery RL, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21(14):1790–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Morgan M, Maloney D, Duvic M. Hypomagnesemia and hypocalcemia in mycosis fungoides: a retrospective case series. Leuk Lymphoma. 2002;43(6):1297–302.

    PubMed  Google Scholar 

  92. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.

    PubMed  Google Scholar 

  93. Shah MH, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003.

    CAS  PubMed  Google Scholar 

  94. Stadler WM, et al. A phase II study of depsipeptide in refractory metastatic renal cell cancer. Clin Genitourin Cancer. 2006;5(1):57–60.

    CAS  PubMed  Google Scholar 

  95. Piekarz RL, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12(12):3762–73.

    CAS  PubMed  Google Scholar 

  96. Whittaker SJ, Foss FM. Efficacy and tolerability of currently available therapies for the mycosis fungoides and Sezary syndrome variants of cutaneous T-cell lymphoma. Cancer Treat Rev. 2007;33(2):146–60.

    CAS  PubMed  Google Scholar 

  97. Duvic M, et al. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2006;7(1):51–8.

    CAS  PubMed  Google Scholar 

  98. Hanel W, et al. A retrospective comparative outcome analysis following systemic therapy in Mycosis fungoides and Sezary syndrome. Am J Hematol. 2016;91(12):E491–5.

    CAS  PubMed  Google Scholar 

  99. Suchin KR, et al. Treatment of cutaneous T-cell lymphoma with combined immunomodulatory therapy: a 14-year experience at a single institution. Arch Dermatol. 2002;138(8):1054–60.

    PubMed  Google Scholar 

  100. Talpur R, et al. Long term outcomes of 1263 patients with Mycosis fungoides and Sézary syndrome from 1982 to 2009. Clin Cancer Res. 2012;18(18):5051–60.

    CAS  PubMed  Google Scholar 

  101. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.

    CAS  PubMed  Google Scholar 

  102. Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther. 2014;143(3):323–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dummer R, et al. Vorinostat combined with bexarotene for treatment of cutaneous T-cell lymphoma: in vitro and phase I clinical evidence supporting augmentation of retinoic acid receptor/retinoid X receptor activation by histone deacetylase inhibition. Leuk Lymphoma. 2012;53(8):1501–8.

    CAS  PubMed  Google Scholar 

  104. Gardner JM, et al. A novel regimen of vorinostat with interferon gamma for refractory Sézary syndrome. J Am Acad Dermatol. 2009;61(1):112–6.

    PubMed  Google Scholar 

  105. Geskin L. Vorinostat in combination therapy for cutaneous T-cell lymphoma: a first year of clinical experience at a single center. Community Oncology. 2010;7(1):31–6.

    Google Scholar 

  106. Samimi S, et al. Romidepsin and interferon gamma: a novel combination for refractory cutaneous T-cell lymphoma. J Am Acad Dermatol. 2013;68(1):e5–6.

    CAS  PubMed  Google Scholar 

  107. Vesely J, Sorm F. The cytologic and the metabolic effects of a new antileukemic analogue 5-azacytidine in normal mice followed autoradiographically with tritium. Neoplasma. 1965;12:3–9.

    CAS  PubMed  Google Scholar 

  108. Li H, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014;5(3):587–98.

    PubMed  PubMed Central  Google Scholar 

  109. Rozati S, et al. Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL. Clin Cancer Res. 2016;22(8):2020–31.

    CAS  PubMed  Google Scholar 

  110. Celgene. Romidepsin Plus Oral 5-Azacitidine in Relapsed/Refractory Lymphoid Malignancies. 28 Aug 2017 [cited 17 Jan 2018]. ClinicalTrials.gov identifier: NCT01998035. https://clinicaltrials.gov/ct2/show/NCT01998035. Accessed 3 Feb 2018.

  111. Akilov OE, et al. Low-dose electron beam radiation and romidepsin therapy for symptomatic cutaneous T-cell lymphoma lesions. Br J Dermatol. 2012;167(1):194–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Geskin LJ. Vorinostat in combination with other agents for therapy of cutaneous T-cell lymphomas: a case series. Blood. 2007;110(11):4482.

    Google Scholar 

  113. Kim YH, et al. Topical nitrogen mustard in the management of mycosis fungoides: update of the stanford experience. Arch Dermatol. 2003;139(2):165–73.

    CAS  PubMed  Google Scholar 

  114. Hoppe RT, et al. Mycosis fungoides: management with topical nitrogen mustard. J Clin Oncol. 1987;5(11):1796–803.

    CAS  PubMed  Google Scholar 

  115. Galea AM, Murray V. The influence of chromatin structure on DNA damage induced by nitrogen mustard and cisplatin analogues. Chem Biol Drug Des. 2010;75(6):578–89.

    CAS  PubMed  Google Scholar 

  116. Dulmage BON, et al. Novel therapeutic combination demonstrates more than additive effects in cutaneous T-cell lymphoma. Leuk Lymphoma. 2015;56(7):2225–7.

    PubMed  PubMed Central  Google Scholar 

  117. Foss F, et al. Tolerability to romidepsin in patients with relapsed/refractory T-cell lymphoma. Biomark Res. 2014;2:16.

    PubMed  PubMed Central  Google Scholar 

  118. Jackow CM, et al. Association of erythrodermic cutaneous T-cell lymphoma, superantigen-positive Staphylococcus aureus, and oligoclonal T-cell receptor V beta gene expansion. Blood. 1997;89(1):32–40.

    CAS  PubMed  Google Scholar 

  119. Nguyen V, et al. Cutaneous T-cell lymphoma and Staphylococcus aureus colonization. J Am Acad Dermatol. 2008;59(6):949–52.

    PubMed  Google Scholar 

  120. Istodax (romidepsin) [package insert] 2016. http://www.istodax.com/wp-content/uploads/ISTODAX_PackageInsert.pdf. Accessed 15 Jan 2018.

  121. Zolinza (vorinostat) [package insert] 2015. https://www.merck.com/product/usa/pi_circulars/z/zolinza/zolinza_pi.pdf. Accessed 15 Jan 2018.

  122. Beleodaq (belinostat) [package insert] 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206256lbl.pdf. Accessed 15 Jan 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Geskin.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Susan Bates has been a principal investigator for romidepsin and belinostat studies, and received research funding from Celgene, Inc. She has also participated in advisory boards for Celgene and Mundipharma, and received honoraria for participating in these advisory boards. Larisa Geskin and Adriana Lopez have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, A.T., Bates, S. & Geskin, L. Current Status of HDAC Inhibitors in Cutaneous T-cell Lymphoma. Am J Clin Dermatol 19, 805–819 (2018). https://doi.org/10.1007/s40257-018-0380-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-018-0380-7

Navigation