Skip to main content
Log in

Fe-substituted Polyoxometalate-based Spherical Assemblies as Catalysts for Olefin Epoxidation

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Fe-substituted polyoxometalate(Na15[(P2W15O56)2Fe3])(Fe-POM)-based composite (C19H42N)15[(P2W15O56)2Fe3](CTAB-Fe-POM) was successfully synthesized through an ion-exchanged method. Then, it was self-assembly in a mixed solvent to form surfactant encapsulated complex nanosphere(SECN). The as-prepared SECN was employed as the catalyst for the epoxidation of olefins with H2O2. Compared with (C19H42N)6[α-P2W18O62](CTAB-P2W18), SECN shows a higher activity in the epoxidation of cis-cyclooctene with a high yield(97.3%). The extraordinary performance could be attributed to the amphiphilic module of cetyltrimethylammonium bromide(CTAB), which improves the dispersion of the catalyst in CH3CN and accelerates the catalytic reaction. And Fe atom can rapidly activate H2O2, forming the active intermediate Fe-OOH to realize the transfer of active “O”. Furthermore, the catalyst could be reused five times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee D., Jagadeesh R. V., Junge K., Pohl M. M., Radnik J., Brückner A., Beller M., Angew. Chem. Int. Ed., 2014, 53, 4359

    Article  CAS  Google Scholar 

  2. Zhang M. R., Singh V., Hu X. F., Ma X. Y., Lu J. K., Zhang C., Wang J. P., Niu J. Y., ACS Catal., 2019, 9, 7641

    Article  CAS  Google Scholar 

  3. Fan Z. F., Lin B., Liu Y. Q., Liu Y., Cheng M. S., Catal. Commun., 2021, 158, 106341

    Article  CAS  Google Scholar 

  4. Zhang Z. X., Li D. N., Zhu Q. Q., Hara M., Li Y. S., Ueda W., New J. Chem., 2021, 45, 21624

    Article  CAS  Google Scholar 

  5. Zhou Z. H., Dai G. Y., Ru S., Yu H., Wei Y. G., Dalton Trans., 2019, 48, 14201

    Article  CAS  PubMed  Google Scholar 

  6. Zhang T., Solé-Daura A., Fouilloux H., Poblet J. M., Proust A., Carbó J. J., Guillemot G., ChemCatChem, 2021, 13, 1220

    Article  CAS  Google Scholar 

  7. Weerakkody C., Biswas S., Song W. Q., He J. K., Wasalathanthri N., Dissanayake S., Kriz D. A., Dutta B., Suib S. L., Appl. Catal. B, 2018, 221, 681

    Article  CAS  Google Scholar 

  8. Chen X., Zou Y., Zhang M. K., Gou W. Y., Zhang S., Qu Y. Q., J. Mater. Chem. A, 2022, 10, 6016

    Article  CAS  Google Scholar 

  9. Ciriminna R., Albanese L., Meneguzzo F., Pagliaro M., ChemSusChem, 2016, 9, 3374

    Article  CAS  PubMed  Google Scholar 

  10. Srour H., Le Maux. P., Chevance S., Simonneaux G., Coord. Chem. Rev., 2013, 257, 3030

    Article  CAS  Google Scholar 

  11. Long D. L., Burkholder E., Cronin L., Chem. Soc. Rev., 2007, 36, 105

    Article  CAS  PubMed  Google Scholar 

  12. Altenau J. J., Pope M. T., Prados R. A., So H., Inorg. Chem., 1975, 14, 417

    Article  CAS  Google Scholar 

  13. Venturello C., D’Aloisio R., J. Org. Chem., 1988, 53, 1553

    Article  CAS  Google Scholar 

  14. Zhao S., Jia Y. Q., Song Y. F., Appl. Catal. A: Gen., 2013, 453, 188

    Article  CAS  Google Scholar 

  15. Long D. L., Tsunashima R., Cronin L., Angew. Chem. Int. Ed., 2010, 49, 1736

    Article  CAS  Google Scholar 

  16. Zhou Y., Chen G. J., Long Z. Y., Wang J., RSC Adv., 2014, 4, 42092

    Article  CAS  Google Scholar 

  17. Liu Q. D., Zhang Q. H., Shi W. X., Hu H. S., Zhuang J., Wang X., Nat. Chem., 2022, 14, 433

    Article  PubMed  Google Scholar 

  18. Liu Q. D., He P. L., Yu H. D., Gu L., Ni B., Wang D., Wang X., Sci. Adv., 2019, 5, eaax1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nisar A., Zhuang J., Wang X., Chem. Mater., 2009, 21, 3745

    Article  CAS  Google Scholar 

  20. Nisar A., Zhuang J., Wang X., Adv. Mater., 2011, 23, 1130

    Article  CAS  PubMed  Google Scholar 

  21. Nisar A., Xu X. X., Shen S. L., Hu S., Wang X., Adv. Funct. Mater., 2009, 19, 860

    Article  CAS  Google Scholar 

  22. Song W. J., Ryu Y. O., Song R., Nam W., J. Biol. Inorg. Chem., 2005, 10, 294

    Article  CAS  PubMed  Google Scholar 

  23. Chen K., Costas M., Kim J., Tipton A. K., Que L., J. Am. Chem. Soc., 2002, 124, 3026

    Article  CAS  PubMed  Google Scholar 

  24. Graham C. R., Finke R. G., Inorg. Chem., 2008, 47, 3679

    Article  CAS  PubMed  Google Scholar 

  25. Contant R., Klemperer W. G., Yaghi O., Inorg. Synth., 1990, 27, 104

    CAS  Google Scholar 

  26. Anderson T. M., Zhang X., Hardcastle K. I., Hill C. L., Inorg. Chem., 2002, 41, 2477

    Article  CAS  PubMed  Google Scholar 

  27. Nikoloudakis E., Karikis K., Laurans M., Kokotidou C., Solé-Daura A., Carbó J. J., Charisiadis A., Charalambidis G., Lzzet G., Mitraki A., Douvas A. M., Poblet J. M., Proust A., Coutsolelos, A. G., Dalton Trans., 2018, 47, 6304

    Article  CAS  PubMed  Google Scholar 

  28. Izarova N. V., Maksimovskaya R. I., Willbold S., Kögerler P., Inorg. Chem., 2014, 53, 11778

    Article  CAS  PubMed  Google Scholar 

  29. Teague C. M., Li X., Biggin M. E., Lee L., Kim J., Gewirth A. A., J. Phys. Chem. B, 2004, 108, 1974

    Article  CAS  Google Scholar 

  30. D’Souza L., Noeske M., Richards R. M., Kortz U., J. Colloid Interface Sci., 2013, 394, 157.

    Article  PubMed  Google Scholar 

  31. Rezvani M. A., Khandan S., Appl. Organomet. Chem., 2018, 32, e4524

    Article  Google Scholar 

  32. Li J., Zhao S. H., Li Z., Liu D., Chi Y. N., Hu C. W., Inorg. Chem., 2021, 60, 7785

    Article  CAS  PubMed  Google Scholar 

  33. Zhou C. D., Han C. Y., Liu N. S., J. Environ. Sci., 2024, 135, 232

    Article  Google Scholar 

  34. Maksimchuk N. V., Ivanchikova I. D., Maksimov G. M., Eltsov I. V., Evtushok V. Y., Kholdeeva O. A., Lebbie D., Errington R. J., Solé-Daura A., Poblet J. M., Carbo J. J., ACS Catal., 2019, 9, 6262

    Article  CAS  Google Scholar 

  35. Ma W. B., Yuan H. Y., Wang H. F., Zhou Q. Q., Kong K., Li D. F., Yao Y. F., Hou Z. S., ACS Catal., 2018, 8, 4645

    Article  CAS  Google Scholar 

  36. Ho R. Y., Roelfes G., Feringa B. L., Que L., J. Am. Chem. Soc., 1999, 121, 264

    Article  CAS  Google Scholar 

  37. Roelfes G., Vrajmasu V., Chen K., Ho R. Y., Rohde J. U., Zondervan C., Crois R. M., Schudde E. P., Lutz M., Spek A. L., Hage R., Feringa B. L., Munck E., Que L., Inorg. Chem., 2003, 42, 2639

    Article  CAS  PubMed  Google Scholar 

  38. Das B., Baruah M. J., Sharma M., Sarma B., Karunakar G. V., Satyanarayana L., Roy S., Bhattacharyya P. K., Borah K. K., Bania K. K., Appl. Catal. A: Gen., 2020, 589, 117292

    Article  CAS  Google Scholar 

  39. Park M. J., Lee J., Suh Y., Kim J., Nam W., J. Am. Chem. Soc., 2006, 128, 2630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22101289), the Hundred Talents Programs in the Chinese Academy of Science, and the Ningbo Yongjiang Tablent Introduction Programme, China(No. 2021A-111-G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilei He.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, Z., Wang, T. et al. Fe-substituted Polyoxometalate-based Spherical Assemblies as Catalysts for Olefin Epoxidation. Chem. Res. Chin. Univ. 39, 660–665 (2023). https://doi.org/10.1007/s40242-023-3092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3092-3

Keywords

Navigation