Skip to main content

Advertisement

Log in

Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Although organic semiconductors have attracted extensive interest and been utilized to fabricate a variety of optoelectronic devices, their electrical transportation characteristics under high pressure have rarely been investigated. However, the weak intermolecular interaction of organic semiconductors endows them with a pressure-sensitive crystal structure and electrical transportation performance, especially the latter. Herein, a new pressure-sensitive transistor was fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. It was found that this transistor exhibited increasing resistance as the pressure gradually increased and that it eventually shut off under a pressure of 288 MPa. Such a characteristic makes this organic semiconductor a potential candidate for the use in the fabrication of pressure-sensitive switches and regulators. In addition, these results shed light on the electrical performance of flexible organic optoelectronic devices working under high pressure levels resulted from the bending force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H., Liu H., Zhang Z., Hu K., Fang X., Adv. Mater., 2016, 28, 403

    Article  CAS  Google Scholar 

  2. Bittle E. G., Basham J. I., Jackson T. N., Jurchescu O. D., Gundlach D. J., Nat. Commun., 2016, 7, 10908

    Article  CAS  Google Scholar 

  3. Leonardi F., Casalini S., Zhang Q., Galindo S., Gutiérrez D., Mas-Torrent M., Adv. Mater., 2016, 28, 10311

    Article  CAS  Google Scholar 

  4. Chen Y., Li C., Xu X., Liu M., He Y., Murtaza I., Zhang D., Yao C., Wang Y., Meng H., ACS Appl. Mater. Interfaces, 2017, 9, 7305

    Article  CAS  Google Scholar 

  5. Zhang J., Wen Y., Li Q., Han Z., Fu Z., Cao W., Chem. Res. Chinese Univerities, 2013, 29(5), 998

    Article  Google Scholar 

  6. Kim J. H., Wood S., Park J. B., Wade J., Song M., Yoon S. C., Jung I. H., Kim J. S., Hwang D. H., Adv. Funct. Mater., 2016, 26, 1517

    Article  CAS  Google Scholar 

  7. Oh Y., Lim J. W., Kim J. G., Wang H., Kang B. H., Park Y. W., Kim H., Jang Y. J., Kim J., Kim D. H., Ju B. K., ACS Nano., 2016, 10, 10143

    Article  CAS  Google Scholar 

  8. Hong M. Lee Y., J., Lee E. K., Yu H., Kim H., Lee J. U., Lee W., Oh J. H., Adv. Funct. Mater., 2016, 26, 1445

    Article  Google Scholar 

  9. Tsizh B. R., Aksimentyeva O. I., Chokhan M. I., Portak Y. R., Mol. Cryst. Liq. Cryst., 2011, 535, 220

    Article  CAS  Google Scholar 

  10. Han S., Zhuang X., Shi W., Yang X., Li L., Yu J., Sens. Actuators B: Chem., 2016, 225, 10

    Article  CAS  Google Scholar 

  11. Laquindanum J. G., Katz H. E., Dodabalapur A., Lovinger A. J., J. Am. Chem. Soc., 1996, 118, 11331

    Article  CAS  Google Scholar 

  12. Gupta R. K., Singh R. A., Mater. Chem. Phys., 2004, 86, 279

    Article  CAS  Google Scholar 

  13. Pivovar A. M., Curtis J. E., Leao J. B., Chesterfield R. J., Frisbie C. D., Chem. Phys., 2006, 325, 138

    Article  CAS  Google Scholar 

  14. Loi M. A., Bongiovanni G., Mura A., Cai Q., Martin C., Chandrasekhar H. R., Chandrasekhar M., Grauper W., Garnier F., Synth. Metals., 2001, 116, 311

    Article  CAS  Google Scholar 

  15. Guha S., Knaapila M., Moghe D., Konôpková Z., Fritsch M. T. M., Scherf U., J. Polym. Sci. Part B: Polym. Phys., 2014, 52, 1014

    Article  CAS  Google Scholar 

  16. Wang Q., Zhang H., Zhang Y., Liu C., Han Y., Ma Y., Gao C., High Pressure Res., 2014, 34, 355

    Article  Google Scholar 

  17. Mailman A., Leitch A. A., Yong W., Steven E., Winter S. M., Claridge R. C., Assoud A., Tse J. S., Desgreniers S., Secco R. A., Oakley R. T., J. Am. Chem. Soc., 2017, 139, 2180

    Article  CAS  Google Scholar 

  18. Beales T. P., Quereshi S., Willis M. R., Physica Status Solid A, 1989, 114, 299

    Article  CAS  Google Scholar 

  19. Taniguchi H., Miyashita M., Uchiyama K., Satoh K., Môri N., Oka-moto H., Miyagawa K., Kanoda K., Heda M., Uwatoko Y., J. Phys. Soc. Jpn., 2003, 72, 468

    Article  CAS  Google Scholar 

  20. Sakai K., Okada Y., Kitaoka S., Tsurumi J., Ohishi Y., Fujiwara A., Takimiya K., Takeya J., Phys. Rev. Lett., 2013, 110, 096603

    Article  CAS  Google Scholar 

  21. Rang Z., M. Nathan I., Ruden P. P., Chesterfield R., Frisbie C. D., Appl. Phys. Lett., 2004, 85, 5760

    Article  CAS  Google Scholar 

  22. Okada Y., Sakai K., Uemura T., Nakazawa Y., Takeya J., Phys. Rev. B., 2011, 84, 245308

    Article  Google Scholar 

  23. Chen X. M., Cai J. W., Single-Crystal Structural Analysis. Principles and Practices, Science Press, Beijing, 2003, 1, 14

    Google Scholar 

  24. Freytag M., Jones P. G., Ahrens B., Fischer A. K., New J. Chem., 1999, 23, 1137

    Article  CAS  Google Scholar 

  25. Zhao D., Liu Z., Shi L. Q., Yu W. T., Cui D. L., Tao X. T., Z. Kristal-logr. NCS, 2012, 227, 245

    CAS  Google Scholar 

  26. Russell J. H., Wallwork S. C., Acta Cryst., 1971, B27, 2473

    Article  Google Scholar 

  27. Eckert N. A., Bauer J. K., Connic W., Acta Cryst., 1999, C55, IUC9900101

    Google Scholar 

  28. Cao L., Liu Z., Wang T., Dai H., Zhang L., Tao X., Cui D., Cryst-EngComm., 2012, 14, 5795

    Article  CAS  Google Scholar 

  29. Wu H., Bai F., Sun Z., Haddad R. E., Boye D. M., Wang Z., Fan H., Angew. Chem. Int. Ed., 2010, 49, 8431

    Article  CAS  Google Scholar 

  30. Wu H., Wang Z., Fan H., J. Am. Chem. Soc., 2014, 136, 7634

    Article  CAS  Google Scholar 

  31. Grimsdale A. C., Müllen K., Angew. Chem. Int. Ed., 2005, 44, 5592

    Article  CAS  Google Scholar 

  32. Okamoto T., Nakahara K., Saeki A., Seki S., Oh J. H., Akkerman H. B., Bao Z., Matsuo Y., Chem. Mater., 2011, 23, 1646

    Article  CAS  Google Scholar 

  33. Hoeben F. J., Jonkheijm P., Meijer E. W., Schenning A. P., Chem. Rev., 2005, 105, 1491

    Article  CAS  Google Scholar 

  34. Liu G., Liu J., Liu Y., Tao X., J. Am. Chem. Soc., 2013, 136, 590

    Article  Google Scholar 

Download references

Acknowledgements

The authors faithfully thank Prof. YU Xiaoqiang from the State Key Laboratory of Crystal Materials, Shandong University for his kind help in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Lian or Deliang Cui.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51372143, 51102151) and the Natural Science Foundation of Shandong Province, China(No.ZR2015EM006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Liu, Y., Liu, Z. et al. Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. Chem. Res. Chin. Univ. 34, 95–100 (2018). https://doi.org/10.1007/s40242-018-7297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7297-9

Keywords

Navigation