Skip to main content
Log in

Elimination and detoxification of phenanthrene assisted by a laccase from halophile Alkalibacillus almallahensis

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Phenanthrene (Phe), a tricyclic Polycyclic Aromatic Hydrocarbon (PAH), is found in high concentrations as a pollutant in various environments. In this study, the removal or (oxidizing) ability of Phe by a laccase from Alkalibacillus almallahensis was investigated. The laccase (12 U mL−1) was able to remove 63% of Phe (50 mg L−1) under optimal conditions of 40 °C, pH 8, 1.5 M NaCl and in the presence of 1 mM HBT as a laccase mediator after a 72 h incubation period. The results for the effect of different solvents, ionic and non-ionic surfactants on the activity of the halophilic laccase towards Phe showed that the addition of these compounds increase removal efficiency and complete enzymatic removal of Phe will achieve in a solution of 5% (v/v) acetone and 1.5% tween 80. The kinetic parameters Km and Vmax of laccase-catalyzed removal of the substrate were determined as 0.544 mM and 0.882 µmol h−1 mg−1, respectively. A microtoxicity study with respect to the inhibition of algal growth showed a decrease in toxicity of the laccase-treated Phe solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the results of this study will be made available by the corresponding author, upon reasonable request.

References

  1. Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. 2014;5:173.

    Article  Google Scholar 

  2. Cui C, et al. Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3. Int Biodeter Biodegr. 2014;89:67–73.

    Article  CAS  Google Scholar 

  3. Kadri T, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci. 2017;51:52–74.

    Article  CAS  Google Scholar 

  4. Patel AB, et al. Synergistic biodegradation of phenanthrene and fluoranthene by mixed bacterial cultures. Bioresour Technol. 2019;284:115–20.

    Article  CAS  Google Scholar 

  5. Xu P, et al. Degradation of several polycyclic aromatic hydrocarbons by laccase in reverse micelle system. Sci Total Environ. 2020;708:134970.

    Article  CAS  Google Scholar 

  6. Rahmani K, et al. Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int Biodeter Biodegr. 2015;97:107–14.

  7. Torres E, Bustos-Jaimes I, Le Borgne S. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B. 2003;46(1):1–15.

    Article  CAS  Google Scholar 

  8. Enache M, Kamekura M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem. 2010;47(1):46–59.

    Google Scholar 

  9. Theerachat M, et al. Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Appl Biochem Biotechnol. 2019;187(2):583–611.

    Article  CAS  Google Scholar 

  10. Fang Z-M, et al. A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol. 2012;111:36–41.

    Article  CAS  Google Scholar 

  11. Uthandi S, et al. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol. 2010;76(3):733–43.

    Article  CAS  Google Scholar 

  12. Collins PJ, et al. Oxidation of Anthracene and Benzo [a] pyrene by Laccases from Trametes versicolor. Appl Environ Microbiol. 1996;62(12):4563–7.

    Article  CAS  Google Scholar 

  13. Covino S, et al. In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol. 2010;101(9):3004–12.

    Article  CAS  Google Scholar 

  14. Fang Z, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol. 2011;89(4):1103–10.

    Article  CAS  Google Scholar 

  15. Dalfard AB, et al. Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzym Microb Technol. 2006;39(7):1409–16.

    Article  CAS  Google Scholar 

  16. Kaal EE, de Jong E, Field JA. Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol. 1993;59(12):4031–6.

    Article  CAS  Google Scholar 

  17. Jones CG, Hare JD, Compton SJ. Measuring plant protein with the Bradford assay. J Chem Ecol. 1989;15(3):979–92.

    Article  CAS  Google Scholar 

  18. Pantsyrnaya T, et al. Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere. 2011;83(1):29–33.

    Article  CAS  Google Scholar 

  19. Zhang J, et al. Salting-out assisted liquid/liquid extraction with acetonitrile: a new high throughput sample preparation technique for good laboratory practice bioanalysis using liquid chromatography–mass spectrometry. Biomed Chromatogr. 2009;23(4):419–25.

    Article  CAS  Google Scholar 

  20. économiques O. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. Paris: OECD Publishing; 2011.

  21. Chen CY, Wang YJ, Yang CF. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests. Ecotoxicol Environ Saf. 2009;72(5):1514–22.

    Article  CAS  Google Scholar 

  22. Lu L, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Biores Technol. 2012;115:35–40.

    Article  CAS  Google Scholar 

  23. Niladevi KN, et al. Optimization of laccase production from a novel strain—Streptomyces psammoticus using response surface methodology. Microbiol Res. 2009;164(1):105–13.

    Article  CAS  Google Scholar 

  24. Bhuvaneshwari V, et al. Isolation, optimization and production of laccase from Halobacillus halophilus. Int J Biosci Nanosci. 2015;2(2):41–7.

    Google Scholar 

  25. Bisswanger H. Enzyme assays. Perspect Sci. 2014;1(1–6):41–55.

    Article  Google Scholar 

  26. Bilal M, et al. Hazardous contaminants in the environment and their laccase-assisted degradation–a review. J Environ Manag. 2019;234:253–64.

    Article  CAS  Google Scholar 

  27. Zeng J, et al. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli. Appl Microbiol Biotechnol. 2011;89(6):1841–9.

    Article  CAS  Google Scholar 

  28. Pozdnyakova NN, et al. Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzym Microb Technol. 2006;39(6):1242–9.

    Article  CAS  Google Scholar 

  29. Han M-J, Park H-T, Song H-G. Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol. 2004;42(2):94–8.

    CAS  Google Scholar 

  30. Ramachandran SD, et al. Influence of salinity and fish species on PAH uptake from dispersed crude oil. Mar Pollut Bull. 2006;52(10):1182–9.

    Article  CAS  Google Scholar 

  31. Ye M, et al. Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol. 2010;87(3):1023–31.

    Article  CAS  Google Scholar 

  32. Molina-Guijarro JM, et al. Detoxification of azo dyes by a novel pH-versatile, salt resistant laccase from Streptomyces ipomoea. Int Microbiol. 2009;12:13–21.

    CAS  Google Scholar 

  33. Dodor DE, Hwang H-M, Ekunwe SI. Oxidation of anthracene and benzo [a] pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Technol. 2004;35(2–3):210–7.

    Article  CAS  Google Scholar 

  34. Cañas AI, Camarero S. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv. 2010;28(6):694–705.

    Article  CAS  Google Scholar 

  35. Majcherczyk A, Johannes C, Hüttermann A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol. 1998;22(5):335–41.

    Article  CAS  Google Scholar 

  36. Cho S-J, et al. Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus. Biotechnol Lett. 2002;24(16):1337–40.

    Article  CAS  Google Scholar 

  37. Zeng X, et al. Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. J Hazard Mater. 2011;187(1-3):517–25.

    Article  CAS  Google Scholar 

  38. Ashrafi SD, et al. The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. Int Biodeter Biodegr. 2013;85:173–81.

  39. Camarero S, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol. 2005;71(4):1775–84.

    Article  CAS  Google Scholar 

  40. Blánquez A, et al. Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J Biol Sci. 2019;26(5):913–20.

    Article  CAS  Google Scholar 

  41. Guanglei J, et al. Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J Environ Sci. 2009;21(11):1486–90.

    Article  CAS  Google Scholar 

  42. Khlifi R, et al. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater. 2010;175(1-3):802–8.

    Article  CAS  Google Scholar 

  43. Eibes G, et al. Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a two-phase partitioning bioreactor. Biochem Eng J. 2010;51(1–2):79–85.

    Article  CAS  Google Scholar 

  44. Doukyu N, Ogino H. Organic solvent-tolerant enzymes. Biochem Eng J. 2010;48(3):270–82.

    Article  CAS  Google Scholar 

  45. Kumar S, et al. Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol. 2012;43(4):1595–603.

    Article  CAS  Google Scholar 

  46. Eibes G, et al. Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme Microb Technol. 2005;37(4):365–72.

    Article  CAS  Google Scholar 

  47. Samaei-Nouroozi A, et al. Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles. 2015;19(5):933–47.

    Article  CAS  Google Scholar 

  48. Moshfegh M, et al. Biochemical characterization of an extracellular polyextremophilic α-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles. 2013;17(4):677–87.

    Article  CAS  Google Scholar 

  49. Zhang C, et al. Purification and characterization of a temperature-and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of malachite green. J Agric Food Chem. 2013;61(23):5468–73.

    Article  CAS  Google Scholar 

  50. Sondhi S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One. 2014;9(5):e96951.

    Article  CAS  Google Scholar 

  51. Eibes G, et al. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation. 2011;22(3):539–50.

    Article  CAS  Google Scholar 

  52. Vandertol-Vanier H, et al. Enhanced activity by poly (ethylene glycol) modification of Coriolopsis gallica laccase. J Ind Microbiol Biotechnol. 2002;29(5):214–20.

    Article  CAS  Google Scholar 

  53. Liu Y, Hua X. Degradation of acenaphthylene and anthracene by chemically modified laccase from Trametes versicolor. RSC Adv. 2014;4(59):31120–2.

    Article  CAS  Google Scholar 

  54. Feng Tc, et al. Phenanthrene biodegradation by halophilic M artelella sp. AD-3. J Appl Microbiol. 2012;113(4):779–89.

    Article  CAS  Google Scholar 

  55. Djomo J, et al. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Res. 2004;38(7):1817–21.

    Article  CAS  Google Scholar 

  56. Pagnout C, et al. Ecotoxicological assessment of PAHs and their dead-end metabolites after degradation by Mycobacterium sp. strain SNP11. Ecotoxicol Environ Saf. 2006;65(2):151–8.

    Article  CAS  Google Scholar 

  57. Umaiyal M, et al. Biodegradation of polycyclic aromatic hydrocarbons by laccase of Pycnoporus sanguineus and toxicity evaluation of treated PAH. Biotechnology. 2008;7(4):669–77.

    Article  Google Scholar 

  58. Pereira L, et al. Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol. 2009;139(1):68–77.

    Article  CAS  Google Scholar 

  59. Aravantinou AF, et al. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf. 2015;114:109–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shiler Valizadeh, Shahla Rezaei, and Elaheh Rahimi designed the study and experiments. Omid Tavakoli and Mohammad Ali Faramarzi instructed the experiments. Shiler Valizadeh, Shahla Rezaei, Sonia Mohamadnia, and Elaheh Rahimi performed the experiments and data analysis. Shiler Valizadeh, Shahla Rezaei, and Sonia Mohamadnia drafted the manuscript. Omid Tavakoli and Mohammad Ali Faramarzi writing-reviewing and editing, the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Omid Tavakoli or Mohammad Ali Faramarzi.

Ethics declarations

Conflict of interest

There are no potential financial or other interests that could be perceived to influence the outcomes of the research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, S., Rezaei, S., Mohamadnia, S. et al. Elimination and detoxification of phenanthrene assisted by a laccase from halophile Alkalibacillus almallahensis. J Environ Health Sci Engineer 20, 227–239 (2022). https://doi.org/10.1007/s40201-021-00771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00771-1

Keywords

Navigation