Skip to main content
Log in

Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: synthesis, characterization and response surface methodology-central composite design modeling

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Bisphenol A (BPA), as endocrine-disrupting compound (EDC), is extensively used as an important chemical in the synthesis of polycarbonate polymers and epoxy resins. BPA absorption into the body can result in the development of metabolic disorders such as low sex-specific neurodevelopment, immune toxicity, neurotoxicity and interference of cellular pathway. Therefore, the presence of BPA in the body and the environment can create hazards that must reach standards before being discharged into the environment.

Methods

In this study, bismuth ferric nanomagnetic (BFO NMPs) were successfully synthesized via sol-gel method and developed as photocatalysts for BPA removal under visible light irradiation. FE-SEM, TEM, PL, XRD, UV-Vis DRS, VSM, EDX, and FTIR were used to characterize the BFO NMPs.

Results

RSM model (R2 = 0.9745) showed a good correlation between experimental and predicted removal efficiency of BPA. The investigation of four independent variables indicated that pH had the most significant positive effect on the degradation of BPA. Under optimal conditions (pH = 4.042, catalyst dose = 7.617 mg, contact time = 122.742 min and BPA concentration = 15.065 mg/L), maximum degradation was calculated to be 98.7%. After five recycles, the removal of BPA remained >82%, which indicated the proper ability to reuse the catalyst.

Conclusion

In conclusion, it can be stated like BPA, the prepared BFO NMPs is a promising photocatalyst for practical application in organic pollutant decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahvi AH, et al. Photo-oxidation of phenol in aqueous solution: toxicity of intermediates. Korean J Chem Eng. 2007;24(1):79–82.

    Article  CAS  Google Scholar 

  2. Bazrafshan E, Biglari H, Mahvi AH. Phenol removal by electrocoagulation process from aqueous solutions. Fresenius Environ Bull. 2012;21(2):364–71.

    CAS  Google Scholar 

  3. Biglari H, et al. A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry. Environ Sci Pollut Res. 2017;24(4):4105–16.

    Article  CAS  Google Scholar 

  4. Maleki A, et al. Degradation and toxicity reduction of phenol by ultrasound waves. Bull Chem Soc Ethiop. 2007;21(1).

  5. Bazrafshan E, Mostafapour FK, Mahvi AH. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost adsorbent. Fresenius Environ Bull. 2012;21(10):2962–8.

    CAS  Google Scholar 

  6. Davididou K, et al. Photocatalytic degradation of bisphenol-a under UV-LED, blacklight and solar irradiation. J Clean Prod. 2018;203:13–21.

    Article  CAS  Google Scholar 

  7. Nikfar E, et al. Removal of bisphenol a from aqueous solutions using ultrasonic waves and hydrogen peroxide. J Mol Liq. 2016;213:332–8.

    Article  CAS  Google Scholar 

  8. Liao C, Kannan K. Concentrations and profiles of bisphenol a and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem. 2013;61(19):4655–62.

    Article  CAS  Google Scholar 

  9. Abo R, Kummer N-A, Merkel BJ. Optimized photodegradation of bisphenol a in water using ZnO, TiO 2 and SnO 2 photocatalysts under UV radiation as a decontamination procedure. Drinking Water Engineering and Science. 2016;9(2):27–35.

    Article  CAS  Google Scholar 

  10. Calafat AM, et al. Exposure of the US population to bisphenol a and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116(1):39–44.

    Article  CAS  Google Scholar 

  11. Pelch K, et al. A scoping review of the health and toxicological activity of bisphenol a (BPA) structural analogues and functional alternatives. Toxicology. 2019;424:152235.

    Article  CAS  Google Scholar 

  12. Dehghani MH, et al. Adsorption of bisphenol a (BPA) from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies. Desalin Water Treat. 2015;54(1):84–92.

    Article  CAS  Google Scholar 

  13. Bechambi O, Sayadi S, Najjar W. Photocatalytic degradation of bisphenol a in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. J Ind Eng Chem. 2015;32:201–10.

    Article  CAS  Google Scholar 

  14. Reddy PVL, et al. Photocatalytic degradation of bisphenol a in aqueous media: a review. J Environ Manag. 2018;213:189–205.

    Article  CAS  Google Scholar 

  15. Abraham A, Chakraborty P. A review on sources and health impacts of bisphenol a. Rev Environ Health. 2020;35(2):201–10.

    Article  CAS  Google Scholar 

  16. Gao B, et al. Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol a. Appl Catal A Gen. 2010;375(1):107–15.

    Article  CAS  Google Scholar 

  17. Wang, X. and T.-T. Lim, Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl Catal B Environ, 2010. 100(1): p. 355–364.

  18. Asadgol Z, et al. Removal of phenol and bisphenol-a catalyzed by laccase in aqueous solution. J Environ Health Sci Eng. 2014;12(1):1–5.

    Article  Google Scholar 

  19. Chen J, Huang X, Lee D. Bisphenol a removal by a membrane bioreactor. Process Biochem. 2008;43(4):451–6.

    Article  CAS  Google Scholar 

  20. Dong Y, et al. Adsorption of bisphenol a from water by surfactant-modified zeolite. J Colloid Interface Sci. 2010;348(2):585–90.

    Article  CAS  Google Scholar 

  21. Mita L, et al. Bisphenol a removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. J Hazard Mater. 2015;291:129–35.

    Article  CAS  Google Scholar 

  22. Deborde M, et al. Oxidation of bisphenol a by ozone in aqueous solution. Water Res. 2008;42(16):4299–308.

    Article  CAS  Google Scholar 

  23. Dehghan A, et al. Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: synthesis and characterization, process optimization, adsorption and degradation modeling. Chem Eng Res Des. 2018;129:217–30.

    Article  CAS  Google Scholar 

  24. Dong W, et al. Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. J Hazard Mater. 2012;229-230:307–20.

    Article  CAS  Google Scholar 

  25. Saravanan R, et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C. 2013;33(1):91–8.

    Article  CAS  Google Scholar 

  26. Gupta VK, et al. Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface. Mater Sci Eng C. 2011;31(5):1062–7.

    Article  CAS  Google Scholar 

  27. Pattnaik SP, et al. Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. J Nanopart Res. 2018;20(1):10.

    Article  Google Scholar 

  28. Soltani T, Entezari MH. Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason Sonochem. 2013;20(5):1245–53.

    Article  CAS  Google Scholar 

  29. Lu H, et al. Enhanced photocatalytic performance of ag-decorated BiFeO3 in visible light region. J Sol-Gel Sci Technol. 2015;76(1):50–7.

    Article  CAS  Google Scholar 

  30. Ponraj C, V G, Daniel J. A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environmental Nanotechnology, Monitoring & Management. 2017;7:110–20.

    Article  Google Scholar 

  31. Dehghani MH, et al. Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study. Korean J Chem Eng. 2017;34(6):1699–707.

    Article  CAS  Google Scholar 

  32. Dehghani MH, Dehghan A, Najafpoor A. Removing reactive red 120 and 196 using chitosan/zeolite composite from aqueous solutions: kinetics, isotherms, and process optimization. J Ind Eng Chem. 2017;51:185–95.

    Article  CAS  Google Scholar 

  33. Karami A, et al. Application of response surface methodology for statistical analysis, modeling, and optimization of malachite green removal from aqueous solutions by manganese-modified pumice adsorbent. Desalin Water Treat. 2017;89:150–61.

    Article  CAS  Google Scholar 

  34. Soltani T, Lee B-K. Sono-synthesis of nanocrystallized BiFeO3/reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol a. Chem Eng J. 2016;306:204–13.

    Article  CAS  Google Scholar 

  35. Liu Y, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl Catal B Environ. 2017;205:421–32.

    Article  CAS  Google Scholar 

  36. Mohapatra DP, et al. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol a and biodegradation from wastewater sludge using response surface model. J Hazard Mater. 2011;189(1):100–7.

    Article  CAS  Google Scholar 

  37. Khataee AR, et al. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J Hazard Mater. 2010;181(1):886–97.

    Article  CAS  Google Scholar 

  38. Mosleh S, et al. Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Adv. 2016;6(21):17204–14.

    Article  CAS  Google Scholar 

  39. Vaez M, Zarringhalam Moghaddam A, Alijani S. Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized Titania nanoparticles. Ind Eng Chem Res. 2012;51(11):4199–207.

    Article  CAS  Google Scholar 

  40. Soleymani AR, et al. Modeling and optimization of a sono-assisted photocatalytic water treatment process via central composite design methodology. Process Saf Environ Prot. 2015;94:307–14.

    Article  CAS  Google Scholar 

  41. Amalraj Appavoo I, et al. Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/UVA process using central composite design. Water Res. 2014;57:270–9.

    Article  CAS  Google Scholar 

  42. Liu H-L, Chiou Y-R. Optimal decolorization efficiency of reactive red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem Eng J. 2005;112(1):173–9.

    Article  CAS  Google Scholar 

  43. Xue Z, et al. Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials (Basel, Switzerland). 2015;8(9):6360–78.

    Article  CAS  Google Scholar 

  44. Gao F, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater. 2007;19(19):2889–92.

    Article  CAS  Google Scholar 

  45. Soltani T, Entezari MH. Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J Mol Catal A Chem. 2013;377:197–203.

    Article  CAS  Google Scholar 

  46. Gao T, et al. Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater Res Bull. 2014;59:6–12.

    Article  CAS  Google Scholar 

  47. Senthilnathan J, Philip L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J. 2010;161(1):83–92.

    Article  CAS  Google Scholar 

  48. Hao C, et al. Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer. Mater Res Bull. 2014;50:369–73.

    Article  CAS  Google Scholar 

  49. Huo Y, Jin Y, Zhang Y. Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity. J Mol Catal A Chem. 2010;331(1–2):15–20.

    Article  CAS  Google Scholar 

  50. Seck EI, et al. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid by using sol–gel synthesized nanocrystalline and commercial TiO2: operational parameters optimization and toxicity studies. Appl Catal B Environ. 2012;125:28–34.

    Article  CAS  Google Scholar 

  51. Khataee AR, Kasiri MB, Alidokht L. Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts. Environ Technol. 2011;32(15):1669–84.

    Article  CAS  Google Scholar 

  52. Zhu H, et al. Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination. 2012;286:41–8.

    Article  CAS  Google Scholar 

  53. Cao C, et al. Visible-light photocatalytic decolorization of reactive brilliant red X-3B on Cu2O/crosslinked-chitosan nanocomposites prepared via one step process. Appl Surf Sci. 2013;271:105–12.

    Article  CAS  Google Scholar 

  54. Wang H, et al. Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol a and its analogues degradation in water sample. Appl Surf Sci. 2020;505:144640.

    Article  CAS  Google Scholar 

  55. Chiang K, et al. Photocatalytic degradation and mineralization of bisphenol a by TiO2 and platinized TiO2. Appl Catal A Gen. 2004;261(2):225–37.

    Article  CAS  Google Scholar 

  56. Hunge Y, et al. Photocatalytic degradation of bisphenol a using titanium dioxide@ nanodiamond composites under UV light illumination. J Colloid Interface Sci. 2021;582:1058–66.

    Article  CAS  Google Scholar 

  57. Soltani T, Tayyebi A, Lee B-K. Quick and enhanced degradation of bisphenol a by activation of potassium peroxymonosulfate to SO4− with Mn-doped BiFeO3 nanoparticles as a heterogeneous Fenton-like catalyst. Appl Surf Sci. 2018;441:853–61.

    Article  CAS  Google Scholar 

  58. Li L, et al. Enhanced mineralization of bisphenol a by eco-friendly BiFeO3–MnO2 composite: performance, mechanism and toxicity assessment. J Hazard Mater. 2020;399:122883.

    Article  CAS  Google Scholar 

  59. Chu Y, et al. Fabrication of flower-globular Bi2WO6/BiOI@ Ag3PO4 photocatalyst for the degradation of bisphenol a and cefepime under sunlight: photoelectric properties, degradation performance, mechanism and biodegradability enhancement. Sep Purif Technol. 2021;272:118866.

    Article  CAS  Google Scholar 

  60. Mengting Z, et al. 2D graphene oxide (GO) doped pn type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol a (BPA) in aqueous solutions under UV-vis irradiation. Mater Sci Eng C. 2020;108:110420.

    Article  Google Scholar 

  61. Li X, et al. Application of pea-like yolk–shell structured Fe 3 O 4@ TiO 2 nanosheets for photocatalytic and photo-Fenton oxidation of bisphenol-a. RSC Adv. 2019;9(38):22153–60.

    Article  CAS  Google Scholar 

  62. Garg A, et al. Photocatalytic degradation of bisphenol-a using N, co Codoped TiO 2 catalyst under solar light. Sci Rep. 2019;9(1):1–13.

    Article  Google Scholar 

  63. Jiao Z, et al. Degradation of bisphenol a by CeCu oxide catalyst in catalytic wet peroxide oxidation: efficiency, stability, and mechanism. Int J Environ Res Public Health. 2019;16(23):4675.

    Article  CAS  Google Scholar 

  64. Nguyen, T.B., C. Huang, and R.-a. Doong, Photocatalytic degradation of bisphenol a over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci Total Environ, 2019. 646: p. 745–756.

  65. Zhu Y, et al. Efficient activation of persulfate by Fe 3 O 4@ β-cyclodextrin nanocomposite for removal of bisphenol a. RSC Adv. 2018;8(27):14879–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Tehran University of Medical Sciences (TUMS), Institute for Environmental Research with research code of 96-03-46-36266. Hence, the authors would like to express their gratitude for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Mesdaghinia.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudian, M.H., Mesdaghinia, A., Mahvi, A.H. et al. Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: synthesis, characterization and response surface methodology-central composite design modeling. J Environ Health Sci Engineer 20, 617–628 (2022). https://doi.org/10.1007/s40201-021-00762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00762-2

Keywords

Navigation