Skip to main content
Log in

A resin containing motifs of maleic acid and glycine: a super-adsorbent for adsorptive removal of basic dye pararosaniline hydrochloride and Cd(II) from water

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The cyclocopolymerization of N,N-diallylglycine hydrochloride, maleic acid and 1,1,4,4-tetraallylpiperazinium dichloride afforded a cross-linked polyzwitterionic acid, which, upon treatment with NaOH, gave the corresponding cross-linked anionic polyelectrolyte (CAPE) in quantitative yield. The pH-responsive resins contained a high density of CO2 motifs as well as the chelating motifs of glycine residues. The resin CAPE was found to be a super-adsorbent for the removal of pararosaniline hydrochloride (PRH); having a qmax of 1534 mg/g. The adsorption process followed pseudo-second-order kinetics and was found to be a nearly irreversible process as suggested by the parameters obtained from Elovich kinetic model. The resin demonstrated excellent adsorption/desorption efficiencies, thereby ensuring its recycling and reuse in potent applications like remediation of industrial dye-waste water. The resin’s chelating motifs were also efficient in the adsorptive removal of Cd(II) ions with a qmax of 248 mg/g. It was also employed for the simultaneous and effective trapping of Cd(II) and the dye from industrial wastewater. The resin’s impressive performance accords it a prestigious place among many sorbents in recent works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ip AWM, Barford JP, McKay G. A comparative study on the kinetics and mechanisms of removal of reactive black 5 by adsorption onto activated carbons and bone char. Chem Eng J. 2010;157:434–42.

    Article  CAS  Google Scholar 

  2. Garg VK, Kumar R, Gupta R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigment. 2004;62:1–10.

    Article  CAS  Google Scholar 

  3. Wang J, Liu F. Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+. Chem Eng J. 2014;242:117–26.

    Article  CAS  Google Scholar 

  4. Feng Y, Yang F, Wang Y, Ma L, Wu Y, Kerr PG, et al. Basic dye adsorption onto an agro-based waste material--sesame hull (Sesamum indicum L.). Bioresour. Technol. 2011;102:10280–5.

    Article  CAS  Google Scholar 

  5. Prasad AL, Santhi T. Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco-friendly adsorbent. Sustain Environ Res. 2012;22:113–22.

    CAS  Google Scholar 

  6. Chandane V, Singh VK. Adsorption of safranin dye from aqueous solutions using a low-cost agro-waste material soybean hull. Desalin Water Treat. 2016;57:4122–34.

    Article  CAS  Google Scholar 

  7. Bayramoglu G, Altintas B, Arica MY. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation exchange resin. Chem. Eng. J. 2009;152:339–46.

    Article  CAS  Google Scholar 

  8. Ma I-L, Wong W-L, Chan F-Y, So P-K, Lai T-S, Zhou Z-Y, et al. A highly selective luminescent switch-on probe for Histidine/Histidine-rich proteins and its application in protein staining. Angew Chem Int Ed. 2008;47:3735–9.

    Article  CAS  Google Scholar 

  9. Khan TA, Khan EA, Shahjahan. Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: Non-linear isotherm and kinetics modeling. Appl Clay Sci. 2015;107:70–7.

    Article  CAS  Google Scholar 

  10. He Y, Li H, Zhang Z, Lu T, Wang RM. Bentonite-copolymer composite for removing basic Fuchsin. Key Eng Mater. 2017;726:345–9.

    Article  Google Scholar 

  11. Huang LH, Kong JJ, Wang WL, Zhang CL, Niu SF, Gao BY. Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin. Desalination. 2012;286:268–76.

    Article  CAS  Google Scholar 

  12. Zhou Y, Jin Q, Hu X, Zhang Q, Ma T. Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride. J Mater Sci. 2012;47:5019–29.

    Article  CAS  Google Scholar 

  13. Saruchi VR, Kumar V, ALOthman AA. Comparison between removal of Ethidium bromide and eosin by synthesized manganese (II) doped zinc (II) sulphide nanoparticles: kinetic, isotherms and thermodynamic studies. J Environ Health Sci. Eng. 2020;18:1175–87.

    Article  CAS  Google Scholar 

  14. Ai L, Jiang J. Fast removal of organic dyes from aqueous solutions by AC/ferrospinel composite. Desalination. 2010;262:134–40.

    Article  CAS  Google Scholar 

  15. Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater. 2010;177:70–80.

    Article  CAS  Google Scholar 

  16. Nayeri D, Mousavi SA. Dye removal from water and wastewater by nanosized metal oxides - modified activated carbon: a review on recent researches. J Environ Health Sci Eng. 2020;18:1671–89.

    Article  CAS  Google Scholar 

  17. Kalita S, Pathak M, Devi G, Sarma HP, Bhattacharyya KG, Sarmad A, et al. Utilization of Euryale ferox Salisbury seed shell for removal of basic fuchsin dye from water: equilibrium and kinetics investigation. RSC Adv. 2017;7:27248–59.

    Article  CAS  Google Scholar 

  18. Tan P, Hu Y. Improved synthesis of graphene/β-cyclodextrin composite for highly efficient dye adsorption and removal. J Mol Liq. 2017;242:181–9.

    Article  CAS  Google Scholar 

  19. Wu X-L, Xiao P, Zhong S, Fang K, Lin H, Chen J. Magnetic ZnFe2O4@chitosan encapsulated in graphene oxide for adsorptive removal of organic dye. RSC Adv. 2017;7:28145–51.

    Article  CAS  Google Scholar 

  20. Lu T, Wang L, He Y, Chen J, Wang R-M. Loess surface grafted functional copolymer for removing basic fuchsin. RSC Adv. 2017;7:18379–83.

    Article  CAS  Google Scholar 

  21. Yang X, Li Y, Du Q, Sun J, Chen L, Hu S, et al. Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J Colloid Interface Sci. 2015;453:107–14.

    Article  CAS  Google Scholar 

  22. Srivastava V, Weng CH, Singh VK, Sharma YC. Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data. 2011;56:1414–22.

    Article  CAS  Google Scholar 

  23. Ouadjenia-Marouf F, Marouf R, Schott J, Yahiaoui A. Removal of cu(II), cd(II) and Cr(III) ions from aqueous solution by dam silt. Arab J Chem. 2013;6:401–6.

    Article  CAS  Google Scholar 

  24. Rao MM, Ramesh A, Rao GPC, Seshaiah K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J Hazard Mater. 2006;B129:123–9.

    Google Scholar 

  25. WHO. Guidelines for Drinking Water Quality: Recommendations. World Health Organization, Geneva, third ed., vol. 1, 2008.

  26. Mahvi AH, Gholami F, Nazmara S. Cadmium biosorption from wastewater by Ulmus leaves and their ash. Eur J Sci Res. 2008;23:197–203.

    Google Scholar 

  27. Mehrizi EA, Sadani M, Karimaei M, Ghahramani E, Ghadiri K, Taghizadeh MS. Isotherms and kinetics of Lead and cadmium uptake from the waste leachate by natural bbsorbent. World Appl Sci J. 2011;15:1678–86.

    CAS  Google Scholar 

  28. Butler GB. Cyclopolymerization and cyclocopolymerization. New York: Marcel Dekker; 1992.

    Google Scholar 

  29. Butler GB. Cyclopolymerization. J Polym Sci Part A Polym Chem. 2000;38:3451–61.

    Article  CAS  Google Scholar 

  30. Yaagoob IY, Al-Muallem HA, Ali SA. Synthesis and application of polyzwitterionic and polyampholytic maleic acid-alt-(diallylamino)propylphosphonates. RSC Adv. 2017;7:31641–53.

    Article  CAS  Google Scholar 

  31. Ali SA, Ahmed SZ, Hamad EZ. Cyclopolymerization studies of diallyl- and tetraallylpiperazinium salts. J Appl Polym Sci. 1996;61:1077–85.

    Article  CAS  Google Scholar 

  32. Ali SA, Al Hamouz OCS, Hassan NM. Novel cross-linked polymers having pH-responsive amino acid residues for the removal of Cu2+ from aqueous solution at low concentrations. J Hazard Mater. 2013;248–249:47–58.

    Article  Google Scholar 

  33. Ali SA, Yaagoob IY, Mazumder MAJ, Al-Muallem HA. Fast removal of methylene blue and hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid. J Hazard Mater. 2019;369:642–54.

    Article  CAS  Google Scholar 

  34. McGrew FC. Structure of synthetic high polymers. J Chem Educ. 1958;35:178–86.

    Article  CAS  Google Scholar 

  35. Alexandratos SD. Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res. 2009;48:388–98.

    Article  CAS  Google Scholar 

  36. Kunin R, Meitzner EA, Oline JA, Fisher SA, Frisch N. Characterization of amberlyst 15. Macroreticular sulfonic acid cation exchange resin. Dev Ind Eng Chem Prod Res. 1962;1(2):140–4.

    CAS  Google Scholar 

  37. Rullens F, Devillers M, Laschewsky A. New regular, amphiphilic poly(ampholyte)s: synthesis and characterization. Macromol Chem Phys. 2004;205:1155–66.

    Article  CAS  Google Scholar 

  38. Hahn M, Jaeger W, Schmolke R, Behnisch J. 1990. Synthesis of regular polyampholytes by copolymerization of maleic acid with allyl and diallyl amine derivatives. Acta Polym. 1990;41:107–12.

    Article  CAS  Google Scholar 

  39. Al-Muallem HA, Wazeer MIM, Ali SA. Synthesis and solution properties of a new pH-responsive polymer containing amino acid residues. Polymer. 2002;43:4285–95.

    Article  CAS  Google Scholar 

  40. Iogannsen MG. Some structural features of vital dyes. B Exp Biol Med. 1977;83:591–5.

    Article  Google Scholar 

  41. Ramesh A, Hasegawa H, Maki T, Ueda K. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep Purif Technol. 2007;56:90–100.

    Article  CAS  Google Scholar 

  42. Wu FC, Tseng RL, Juang RS. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J. 2009;153:1–8.

    Article  CAS  Google Scholar 

  43. Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol. 2007;98:14–21.

    Article  CAS  Google Scholar 

  44. Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186:458–65.

    Article  CAS  Google Scholar 

  45. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC. KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem Eng J. 2016;286:476–84.

    Article  CAS  Google Scholar 

  46. Pearson JF, Slifkin MA. The infrared spectra of amino acids and dipeptides. Spectrochim Spectrochim Acta A. 1972;28A:2403–17.

    Article  Google Scholar 

  47. Lima ÉC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273:425–34.

    Article  CAS  Google Scholar 

  48. Lima ÉC, Adebayo MA, Machado FM. Chapter 3-kinetic and equilibrium models of adsorption. In: Bergmann C, Machado F, editors. Carbon Nanomaterials as adsorbents for environmental and biological applications. Springer, Germany.: Carbon Nanostructures; 2015. p. 33–69.

    Chapter  Google Scholar 

  49. Haghseresht F, Lu G. Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuel. 1998;12:1100–7.

    Article  CAS  Google Scholar 

  50. Thue PS, Sophia AC, Lima EC, Wamba AGN, de Alencar WS, dos Reis GS, et al. Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. J Clean Prod. 2018;171:30–44.

    Article  CAS  Google Scholar 

  51. Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater. 2006;135:264–73.

    Article  CAS  Google Scholar 

  52. Yu J-X, Zhu J, Feng L-Y, Chi R-A. Simultaneous removal of cationic and anionic dyes by the mixed sorbent of magnetic and non-magnetic modified sugarcane bagasse. J Colloid Interface Sci. 2015;451:153–60.

    Article  CAS  Google Scholar 

  53. Sun Q, Yang L. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res. 2003;37:1535–44.

    Article  CAS  Google Scholar 

  54. Shi Q, Zhang J, Zhang C, Nie W, Zhang B, Zhang H. Adsorption of basic violet 14 in aqueous solutions using KMnO4-modified activated carbon. J Colloid Interface Sci. 2010;343:188–93.

    Article  CAS  Google Scholar 

  55. Hao GP, Li WC, Wang S, Zhang SF, Lu AH. Tubular structured ordered mesoporous carbon as an efficient sorbent for the removal of dyes from aqueous solutions. Carbon. 2010;48:3330–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research facilities provided by King Fahd University of Petroleum and Minerals (KFUPM), and financial assistance by Deanship of Scientific Research (DSR), KFUPM, Saudi Arabia, through the Project # IN161036 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad A. J. Mazumder or Shaikh A. Ali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaagoob, I.Y., Mazumder, M.A.J., Al-Muallem, H.A. et al. A resin containing motifs of maleic acid and glycine: a super-adsorbent for adsorptive removal of basic dye pararosaniline hydrochloride and Cd(II) from water. J Environ Health Sci Engineer 19, 1333–1346 (2021). https://doi.org/10.1007/s40201-021-00690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00690-1

Keywords

Navigation