Skip to main content

Advertisement

Log in

Urinary parabens, bisphenol A and triclosan in primiparas from Shenzhen, China: Implications for exposure and health risks

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The usage of parabens, bisphenol A and triclosan in diverse consumer products is in widespread. Nevertheless, there are limited data concerning exposure to these chemicals in human being, especially in primiparas. Biomonitoring of chemicals in primiparas is useful for the estimation of chemical exposure risks for both primiparas and their offspring. This study aims to investigate urinary levels of parabens, bisphenol A and triclosan of 84 primiparas from Shenzhen, China and to evaluate their potential health risks. Methyl, ethyl, and n-propyl parabens bisphenol A and triclosan exhibited high detection rates (DRs) (> 97%) in urine samples, suggesting that primiparas are exposed to them widely. The median concentrations of methyl, ethyl, and n-propyl parabens, bispenol A and triclosan in urine were 2.14, 4.10, 0.46, 1.30 and 3.00 µg/L, respectively. Ethyl paraben was the predominant paraben accounting for nearly half of Σ3parabens (The sum concentrations of methyl, ethyl, n-propyl parabens). Positive associations with significance (p < 0.05) were found between the usage of plastic containers and urinary concentrations of ethyl paraben or BPA, indicating plastic containers might be an important factor influencing primipara exposure to these two chemicals. Urinary concentrations of methyl paraben were positively associated (p < 0.05) with the time of computer use by participant, suggesting that indoor dust might constitute an important source of parabens. The estimated daily intakes of parabens, bisphenol A and triclosan contrasted with the acceptable daily intakes in a comparatively low level. The hazard quotients (HQs) of these chemicals were all less than 1, suggesting no health risks for primiparas from South China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adoamnei E, Mendiola J, Monino-Garcia M, Vela-Soria F, Iribarne-Duran LM, Fernandez MF, Olea N, Jorgensen N, Swan SH, Torres-Cantero AM. Urinary concentrations of parabens and reproductive parameters in young men. Sci Total Environ. 2018;621:201–9.

    Article  CAS  Google Scholar 

  2. Artacho-Cordón F, Fernández MF, Frederiksen H, Iribarne-Durán LM, Jiménez-Díaz I, Vela-Soria F, Andersson AM, Martin-Olmedo P, Peinado FM, Olea N, Arrebola JP. Environmental phenols and parabens in adipose tissue from hospitalized adults in Southern Spain. Environ Int. 2018;119:203–11.

    Article  Google Scholar 

  3. Berger K, Gunier RB, Chevrier J, Calafat AM, Ye X, Eskenazi B, Harley KG. Associations of maternal exposure to triclosan, parabens, and other phenols with prenatal maternal and neonatal thyroid hormone levels. Environ Res. 2018;165:379–86.

    Article  CAS  Google Scholar 

  4. Bethea TN, Wesselink AK, Weuve J, McClean MD, Hauser R, Williams PL, Ye X, Calafat AM, Baird DD, Wise LA. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment. Epidemiol: Lifestyle and Fibroids. J Expo Sci Environ Epidemiol. 2020;30:117–36.

  5. Błędzka D, Gromadzińska J, Wąsowicz W. Parabens. From environmental studies to human health. Environ Int. 2014;67:27–42.

    Article  Google Scholar 

  6. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect. 2010;118(5):679–85.

    Article  CAS  Google Scholar 

  7. Camara L, Arbuckle T, Trottier H, Fraser W. Associations between Maternal Exposure to Bisphenol A or Triclosan and Gestational Hypertension&nbsp;and Preeclampsia: The MIREC Study. Am J Perinat. 2019;36(11):1127–35.

    Article  Google Scholar 

  8. Casas L, Fernández MF, Llop S, Guxens M, Ballester F, Olea N, Irurzun MB, Rodríguez LSM, Riaño I, Tardón A, Vrijheid M, Calafat AM, Sunyer J. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int. 2011;37(5):858–66.

    Article  CAS  Google Scholar 

  9. Chen J, Hartmann EM, Kline J, Van Den Wymelenberg K, Halden RU. Assessment of human exposure to triclocarban, triclosan and five parabens in U.S. indoor dust using dispersive solid phase extraction followed by liquid chromatography tandem mass spectrometry. J Hazard Mater. 2018a;360:623–30.

    Article  CAS  Google Scholar 

  10. Chen Y, Fang J, Ren L, Fan R, Zhang J, Liu G, Zhou L, Chen D, Yu Y, Lu S. Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure. Environ Pollut. 2018b;238:299–305.

    Article  CAS  Google Scholar 

  11. Chen J, Meng X, Bergman A, Halden RU. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. J Hazard Mater. 2019;365:502–10.

    Article  CAS  Google Scholar 

  12. Clayton EM, Todd M, Dowd JB, Aiello AE. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003–2006. Environ Health Perspect. 2011;119(3):390–6.

    Article  CAS  Google Scholar 

  13. Dodge LE, Choi JW, Kelley KE, Herńandez-D́iaz S, Hauser R. Medications as a potential source of exposure to parabens in the U.S. population. Environ Res. 2018;164:580–4.

    Article  CAS  Google Scholar 

  14. Dziewirska E, Hanke W, Jurewicz J. Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in&nbsp;adult men. Int J Occup Med Environ Health. 2018;31(4):377–414.

    Google Scholar 

  15. Geens T, Roosens L, Neels H, Covaci A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere. 2009;76(6):755–60.

    Article  CAS  Google Scholar 

  16. Guo Y, Wang L, Kannan K. Phthalates and parabens in personal care products from China: concentrations and human exposure. Arch Environ Contam Toxicol. 2014;66(1):113–9.

    Article  CAS  Google Scholar 

  17. Guo J, Nguyen HT, Ito S, Yamamoto K, Kanerva M, Iwata H. In ovo exposure to triclosan alters the hepatic proteome in chicken embryos. Ecotox Environ Safe. 2018;165:495–504.

    Article  CAS  Google Scholar 

  18. Honda M, Robinson M, Kannan K. Parabens in human urine from several Asian countries, Greece, and the United States. Chemosphere. 2018;201:13–9.

    Article  CAS  Google Scholar 

  19. Huang R, Liu Z, Yuan S, Yin H, Dang Z, Wu P. Worldwide human daily intakes of bisphenol A (BPA) estimated from global urinary concentration data (2000–2016) and its risk analysis. Environ Pollut. 2017;230:143–52.

    Article  CAS  Google Scholar 

  20. Juric A, Singh K, Hu XF, Chan HM. Exposure to triclosan among the Canadian population: Results of the Canadian Health Measures Survey (2009–2013). Environ Int. 2019;123:29–38.

    Article  CAS  Google Scholar 

  21. Kang HS, Kyung MS, Ko A, Park JH, Hwang MS, Kwon JE, Suh JH, Lee HS, Moon GI, Hong JH, Hwang IG. Urinary concentrations of parabens and their association with demographic factors: A population-based cross-sectional study. Environ Res. 2016;146:245–51.

    Article  CAS  Google Scholar 

  22. Kim S. Urinary parabens and triclosan concentrations and associated exposure characteristics in a Korean population—A comparison between night-time and first-morning urine. Int Jour Hygi Environ Heal. 2018;221(4):632–41.

    Article  CAS  Google Scholar 

  23. Kim K, Park H, Yang W, Lee JH. Urinary concentrations of bisphenol A and triclosan and associations with demographic factors in the Korean population. Environ Res. 2011;111(8):1280–5.

    Article  CAS  Google Scholar 

  24. Koch HM, Aylward LL, Hays SM, Smolders R, Moos RK, Cocker J, Jones K, Warren N, Levy L, Bevan R. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: Personal care product ingredients. Toxicol Lett. 2014;231(2):261–9.

    Article  CAS  Google Scholar 

  25. Lakind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National health and nutrition examination survey. J Expo Sci Env Epid. 2011;21(3):272–9.

    Article  CAS  Google Scholar 

  26. Larsson K, Ljung Björklund K, Palm B, Wennberg M, Kaj L, Lindh CH, Jönsson BAG, Berglund M. Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environ Int. 2014;73:323–33.

    Article  CAS  Google Scholar 

  27. Li Y, Zhang H, Kuang H, Fan R, Cha C, Li G, Luo Z, Pang Q. Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China. Environ Pollut. 2018;235:141–9.

    Article  CAS  Google Scholar 

  28. Liao C, Chen L, Kannan K. Occurrence of parabens in foodstuffs from China and its implications for human dietary exposure. Environ Int. 2013;57–58:68–74.

    Article  Google Scholar 

  29. Lu S, Chang W, Sojinu SO, Ni H. Bisphenol A in supermarket receipts and its exposure to human in Shenzhen, China. Chemosphere. 2013;92(9):1190–4.

    Article  CAS  Google Scholar 

  30. Lu S, Wang N, Ma S, Hu X, Kang L, Yu Y. Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks. Environ Pollut. 2018;246:257–63.

    Article  Google Scholar 

  31. Ma WL, Wang L, Guo Y, Liu LY, Qi H, Zhu NZ, Gao CJ, Li YF, Kannan K. Urinary concentrations of parabens in Chinese young adults: implications for human exposure. Arch Environ Contam Toxicol. 2013;65(3):611–8.

    Article  CAS  Google Scholar 

  32. Ma WL, Zhao X, Lin ZY, Mohammed MO, Zhang ZF, Liu LY, Song WW, Li YF. A survey of parabens in commercial pharmaceuticals from China and its implications for human exposure. Environ Int. 2016;95:30–5.

    Article  CAS  Google Scholar 

  33. Ma W, Zhao X, Zhang Z, Xu T, Zhu F, Li Y. Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China. Sci Total Environ. 2018a;644:754–61.

    Article  CAS  Google Scholar 

  34. Ma X, Wan Y, Wu M, Xu Q, Xu Y, He Z, Xia W. Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure. Chemosphere. 2018b;213:517–25.

    Article  CAS  Google Scholar 

  35. Machtinger R, Berman T, Adir M, Mansur A, Baccarelli AA, Racowsky C, Calafat AM, Hauser R, Nahum R. Urinary concentrations of phthalate metabolites, bisphenols and personal care product chemical biomarkers in pregnant women in Israel. Environ Int. 2018;116:319–25.

    Article  CAS  Google Scholar 

  36. Meeker JD, Cantonwine DE, Rivera-González LO, Ferguson KK, Mukherjee B, Calafat AM, Ye X, Del Toro LVA, Crespo-Hernández N, Jiménez-Vélez B, Alshawabkeh AN, Cordero JF. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47(7):3439–47.

    Article  CAS  Google Scholar 

  37. Moos RK, Apel P, Schröter-Kermani C, Kolossa-Gehring M, Brüning T, Koch HM. Daily intake and hazard index of parabens based upon 24 h urine samples of the German Environmental Specimen Bank from 1995 to 2012. J Expo Sci Env Epid. 2016;27:591.

    Article  Google Scholar 

  38. Myridakis A, Fthenou E, Balaska E, Vakinti M, Kogevinas M, Stephanou EG. Phthalate esters, parabens and bisphenol-A exposure among mothers and their children in Greece (Rhea cohort). Environ Int. 2015;83:1–10.

    Article  CAS  Google Scholar 

  39. Nowak K, Wrona RW, Górska M, Jabłońska E. Parabens and their effects on the endocrine system. Mol Cell Endocrinol. 2018;474:238–51.

    Article  CAS  Google Scholar 

  40. Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, Silva MJ, Brambilla C, Pin I, Charles MA, Cordier S, Slama R. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect. 2012;120(3):464–70.

    Article  CAS  Google Scholar 

  41. Philippat C, Nakiwala D, Calafat AM, Botton J, De Agostini M, Heude B, Slama R. Prenatal exposure to nonpersistent endocrine disruptors and behavior in boys at 3 and 5 years. Environ Health Perspect. 2017;125(9):97014.

    Article  Google Scholar 

  42. Philips EM, Jaddoe VWV, Asimakopoulos AG, Kannan K, Steegers EAP, Santos S, Trasande L. Bisphenol and phthalate concentrations and its determinants among pregnant women in a population-based cohort in the Netherlands, 2004–5. Environ Res. 2018;161:562–72.

    Article  CAS  Google Scholar 

  43. Pycke BF, Geer LA, Dalloul M, Abulafia O, Halden RU. Maternal and fetal exposure to parabens in a multiethnic urban U.S. population. Environ Int. 2015;84:193–200.

    Article  CAS  Google Scholar 

  44. Rabhi L, Lemou A, Cecinato A, Balducci C, Cherifi N, Ladji R, Yassaa N. Polycyclic aromatic hydrocarbons, phthalates, parabens and other environmental contaminants in dust and suspended particulates of Algiers, Algeria. Environ Sci Pollut R. 2018;25(24):24253–65.

    Article  CAS  Google Scholar 

  45. Ren L, Fang J, Liu G, Zhang J, Zhu Z, Liu H, Lin K, Zhang H, Lu S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2’-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2016;408(10):2621–9.

    Article  CAS  Google Scholar 

  46. Ribeiro E, Ladeira C, Viegas S. Occupational exposure to Bisphenol A (BPA): A reality that still needs to be unveiled. Toxics. 2017;5(3):22.

    Article  Google Scholar 

  47. Rocha BA, Asimakopoulos AG, Honda M, Da Costa NL, Barbosa RM, Barbosa F, Kannan K. Advanced data mining approaches in the assessment of urinary concentrations of bisphenols, chlorophenols, parabens and benzophenones in Brazilian children and their association to DNA damage. Environ Int. 2018;116:269–77.

    Article  CAS  Google Scholar 

  48. Sakhi AK, Sabaredzovic A, Papadopoulou E, Cequier E, Thomsen C. Levels, variability and determinants of environmental phenols in pairs of Norwegian mothers and children. Environ Int. 2018;114:242–51.

    Article  CAS  Google Scholar 

  49. Shirai S, Suzuki Y, Yoshinaga J, Shiraishi H, Mizumoto Y. Urinary excretion of parabens in pregnant Japanese women. Reprod Toxicol. 2013;35:96–101.

    Article  CAS  Google Scholar 

  50. Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, Ye X, Ford J, Keller M, Meeker JD, Hauser R. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120(11):1538–43.

    Article  CAS  Google Scholar 

  51. Sun X, Li D, Liang H, Miao M, Song X, Wang Z, Zhou Z, Yuan W. Maternal exposure to bisphenol A and anogenital distance throughout infancy: A longitudinal study from Shanghai, China. Environ Int. 2018;121:269–75.

    Article  CAS  Google Scholar 

  52. Wang M, Rang O, Liu F, Xia W, Li Y, Zhang Y, Lu S, Xu S. A systematic review of metabolomics biomarkers for Bisphenol A exposure. Metabolomics. 2018;14(4):45.

    Article  Google Scholar 

  53. Wu C, Li J, Xia W, Li Y, Zhang B, Zhou A, Hu J, Li C, Zhao H, Jiang M, Hu C, Liao J, Huo W, Chen X, Xu B, Lu S, Cai Z, Xu S. The association of repeated measurements of prenatal exposure to triclosan with fetal and early-childhood growth. Environ Int. 2018;120:54–62.

    Article  CAS  Google Scholar 

  54. Xue J, Wu Q, Sakthivel S, Pavithran PV, Vasukutty JR, Kannan K. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ Res. 2015;137:120–8.

    Article  CAS  Google Scholar 

  55. Yusa V, Ye X, Calafat AM. Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends Anal Chem. 2012;38:129–42.

    Article  CAS  Google Scholar 

  56. Zhou X, Yang Z, Luo Z, Li H, Chen G. Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks. Environ Pollut. 2019;244:462–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our study was implemented with the financial support of the National Natural Science Foundation of China (No.41303094, 42077385), the Natural Science Foundation of Guangdong Province, China (No. 2015A030313869) and the Shenzhen Municipal Government Research Projects (No. JCYJ20160428143348745, JCYJ20170306160146913, JCYJ20170306160932340).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyou Lu or Wenbo Li.

Ethics declarations

Conflict of interest

The authors proclaim that there is no conflict of interest among them.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 32.8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhong, S., Zhang, M. et al. Urinary parabens, bisphenol A and triclosan in primiparas from Shenzhen, China: Implications for exposure and health risks. J Environ Health Sci Engineer 19, 251–259 (2021). https://doi.org/10.1007/s40201-020-00599-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00599-1

Keywords

Navigation