Skip to main content
Log in

A novel stochastic wastewater quality modeling based on fuzzy techniques

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Measurement and prediction of wastewater quality parameters are crucial for evaluating the risk to the receiving waters. This study presents new methods for the identification of outlier data and smoothing as an effective pre-processing technique prito to modelling. This new data processing method uses a combination of the autoregressive integrated moving average (ARIMA) model and -the adaptive neuro fuzzy inference system with fuzzy C-means clustering (FCM) (ANFIS-FCM). These new pre-processing methodsare compared to previously employed non-linear approaches for modelling of wastewater influent/effluent 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS). Linear modelling of each parameter, 242 linear models, were investigated, and a linear model for each parameter was selected. The results of the non-linear models led to an acceptable prediction for qualitative parameters so that the high coefficient of determination (R2) was observed for the influent and effluent BOD and TSS, respectively. The range of the R2 for all models was recorded as 0.8–0.87 and 0.83–0.89, respectively. By a combination of the linear and non-linear mothods a hybrid model was introduced. The proposed hybrid model for the influent BOD with the highest correlation between the observed and predicted values, and limited scattering was identified as the optimal model (R2 = 0.95). The use of hybrid models to predict wastewater quality parameters improved the performance and efficiency of the models. In addition, a comparison of the hybrid model with the recently developed models in the literature indicates that the developed ARIMA-ANFIS-FCM outperformed other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Levine AD, Asano T. Peer reviewed: recovering sustainable water from wastewater. J Environ Sci Technol. 2004;38(11):201A–8A.

    CAS  Google Scholar 

  2. Lotfi K, Bonakdari H, Ebtehaj I, Mjalli FS, Zeynoddin M, Delatolla R, et al. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J Environ Manag. 2019;240:463–74.

    CAS  Google Scholar 

  3. Ahmadi E, Yousefzadeh S, Mokammel A, Miri M, Ansar M, Arfaeinia H, et al. Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge. Renew Sust Energ Rev. 2020;121:109674.

    CAS  Google Scholar 

  4. Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering—treatment, disposal and reuse. 3rd ed. New York: McGraw Hill; 2003.

    Google Scholar 

  5. Manu DS, Thalla AK. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl nitrogen from wastewater. Appl Water Sci. 2017;7(7):3783–91.

    CAS  Google Scholar 

  6. Delatolla R, Séguin C, Springthorpe S, Gorman E, Campbell A, Douglas I. Disinfection byproduct formation during biofiltration cycle: implications for drinking water production. Chemosph. 2015;136:190–7.

    CAS  Google Scholar 

  7. Delatolla R, Babarutsi S. Parameters affecting hydraulic behavior of aerated lagoons. Jour Environ Eng. 2005;131(10):1404–13.

    CAS  Google Scholar 

  8. Naghizadeh A, Mahvi A, Vaezi F, Naddafi K. Evaluation of hollow fiber membrane bioreactor efficiency for municipal wastewater treatment. J Environ Health Sci Eng. 2008;5(4):257–68.

    CAS  Google Scholar 

  9. Ahmadi E, Shokri B, Mesdaghinia A, Nabizadeh R, Khani MR, Yousefzadeh S, et al. Synergistic effect of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation. Sep Purif Technol. 2020;250:117185.

    CAS  Google Scholar 

  10. Daghighi A, Nahvi A, Kim U. Optimal cultivation pattern to increase revenue and reduce water use: application of linear programming to Arjan plain in Fars Province. Agriculture-London. 2017;7(9):73.

    Google Scholar 

  11. Yousefzadeh S, Ahmadi E, Gholami M, Ghaffari HR, Azari A, Ansari M, et al. A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study. Biotechnol Biofuels. 2017;10(1):139.

    Google Scholar 

  12. Henze M, Gujer W, Mino T, Van Loosdrecht M. Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment. London: IWA Publishing; 2000.

    Google Scholar 

  13. Vanrolleghem PA, Rosen C, Zaher U, Copp J, Benedetti L, Ayesa E, et al. Continuity based interfacing of models for wastewater systems described by Petersen matrices. Water Sci Technol. 2005;52:493–500.

    CAS  Google Scholar 

  14. Hvala N, Vrečko D, Levstek M, Bordon C. The use of dynamic mathematical models for improving the designs of upgraded wastewater treatment plants. J Sustain Dev Energy Water Environ Syst. 2017;5(1):15–31.

    Google Scholar 

  15. Ashrafi SD, Kamani H, Jaafari J, Mahvi AH. Experimental design and response surface modeling for optimization of fluoroquinolone removal from aqueous solution by NaOH-modified rice husk. Desalin Water Treat. 2016;57(35):16456–65.

    CAS  Google Scholar 

  16. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 2016;404:179–89.

    CAS  Google Scholar 

  17. Khazaei M, Nasseri S, Ganjali MR, Khoobi M, Nabizadeh R, Mahvi AH, et al. Response surface modeling of lead (׀׀) removal by graphene oxide-Fe 3 O 4 nanocomposite using central composite design. J Environ Health Sci Eng. 2016;14(1):2.

    Google Scholar 

  18. Hanbay D, Turkoglu I, Demir Y. Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Syst Appl. 2008;34(2):1038–43.

    Google Scholar 

  19. Yousefzadeh S, Matin AR, Ahmadi E, Sabeti Z, Alimohammadi M, Aslani H, et al. Response surface methodology as a tool for modeling and optimization of bacillus subtilis spores inactivation by UV/nano-Fe0 process for safe water production. Food Chem Toxicol. 2018;114:334–45.

    CAS  Google Scholar 

  20. Sarve A, Sonawane SS, Varma MN. Ultrasound assisted biodiesel production from sesame (Sesamum indicum L.) oil using barium hydroxide as a heterogeneous catalyst: comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason Sonochem. 2015;26:218–28.

    CAS  Google Scholar 

  21. Mostafaei M, Javadikia H, Naderloo L. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy J. 2016;115:626–36.

    CAS  Google Scholar 

  22. Pai TY, Yang PY, Wang SC, Lo MH, Chiang CF, Kuo JL, et al. Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality. Appl Math Model. 2011;35(8):3674–84.

    Google Scholar 

  23. Nadiri AA, Asgari Moghaddam A, Shokri S. Efficiency assessment of 14 wastewater treatment plant of Tabriz using artificial intelligence models. Pol J Environ Stud. 2015;40(4):827–44.

    Google Scholar 

  24. Baziar M, Nabizadeh R, Mahvi AH, Alimohammadi M, Naddafi K, Mesdaghinia A. Application of Adaptive Neural Fuzzy Inference System and Fuzzy C-Means Algorithm in Simulating the 4-Chlorophenol Elimination from Aqueous Solutions by Persulfate/Nano Zero Valent Iron Process. Eurasia J Anal Chem. 2018;13(1):em03.

    Google Scholar 

  25. Azimi H, Bonakdari H, Ebtehaj I, Talesh SHA, Michelson DG, Jamali A. Evolutionary Pareto optimization of an ANFIS network for modeling scour at pile groups in clear water condition. Fuzzy Sets Syst. 2017;319:50–69.

    Google Scholar 

  26. Gholami A, Bonakdari H, Ebtehaj I, Akhtari AA. Design of an adaptive neuro-fuzzy computing technique for predicting flow variables in a 90 sharp bend. J Hydroinf. 2017;19(4):572–85.

    Google Scholar 

  27. Yaseen ZM, Ebtehaj I, Kim S, Sanikhani H, Asadi H, Ghareb MI, et al. Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water. 2019;11(3):502.

    Google Scholar 

  28. Mojtahedi SFF, Ebtehaj I, Hasanipanah M, Bonakdari H, Amnieh HB. Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting. Eng Comput. 2019;35(1):47–56.

    Google Scholar 

  29. Yousefzadeh S, Yaghmaeian K, Mahvi AH, Nasseri S, Alavi N, Nabizadeh R. Comparative analysis of hydrometallurgical methods for the recovery of cu from circuit boards: optimization using response surface and selection of the best technique by two-step fuzzy AHP-TOPSIS method. J Clean Prod. 2020;249:119401.

    CAS  Google Scholar 

  30. Ebtehaj I, Bonakdari H. Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water J. 2016;13(5):499–510.

    Google Scholar 

  31. Ebtehaj I, Bonakdari H. Bed load sediment transport estimation in a clean pipe using multilayer perceptron with different training algorithms. KSCE J Civil Eng. 2016;20(2):581–9.

    Google Scholar 

  32. Moeeni H, Bonakdari H, Ebtehaj I. Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. J Earth Syst Sci. 2017;126(2):18.

    Google Scholar 

  33. Moeeni H, Bonakdari H, Ebtehaj I. Integrated SARIMA with Neuro-fuzzy systems and neural networks for monthly inflow prediction. Water Resour Manag. 2017;31(7):2141–56.

    Google Scholar 

  34. Shaghaghi S, Bonakdari H, Gholami A, Kisi O, Binns A, Gharabaghi B. 2018. Predicting the geometry of regime rivers using M5 model tree, multivariate adaptive regression splines and least square support vector regression methods. Int J River Basin Manage. 2019;17(3):333–52.

    Google Scholar 

  35. Azimi H, Bonakdari H, Ebtehaj I, Gharabaghi B, Khoshbin F. Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mech. 2018;229(3):1197–214.

    Google Scholar 

  36. Zeynoddin M, Bonakdari H, Azari A, Ebtehaj I, Gharabaghi B, Riahi Madavar H. Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate. J Environ Manag. 2018;222:190–206.

    Google Scholar 

  37. Zeynoddin M, Bonakdari H, Ebtehaj I, Esmaeilbeiki F, Gharabaghi B, Haghi DZ. A reliable linear stochastic daily soil temperature forecast model. Soil Tillage Res. 2019;189:73–87.

    Google Scholar 

  38. Zeynoddin M, Bonakdari H, Ebtehaj I, Azari A, Gharabaghi B. A generalized linear stochastic model for lake level prediction. Sci Total Environ. 2020;723:138015.

    CAS  Google Scholar 

  39. Ebtehaj I, Zeynoddin M, Bonakdari H. Discussion of “comparative assessment of time series and artificial intelligence models to estimate monthly streamflow: A local and external data analysis approach” by Saeid Mehdizadeh, Farshad Fathian, Mir Jafar Sadegh Safari and Jan F Adamowski. J Hydrol. 2020;583:124614.

    Google Scholar 

  40. Mjalli FS, Al-Asheh S, Alfadala HE. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J Environ Manag. 2007;83(3):329–38.

    CAS  Google Scholar 

  41. Oliveira-Esquerre KP, Mori M, Bruns RE. Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis. Braz J Chem Eng. 2002;19(4):365–70.

    CAS  Google Scholar 

  42. Ansari M, Othman F, Abunama T, El-Shafie A. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant. Malaysia Environ Sci Pollut Res Int. 2018;25(12):12139–49.

    Google Scholar 

  43. Ebtehaj I, Bonakdari H, Zeynoddin M, Gharabaghi B, Azari A. Evaluation of pre-processing techniques for improving the accuracy of stochastic rainfall forecast models. Int J Environ Sci Technol. 2020;17(1):505–24.

    Google Scholar 

  44. Bonakdari H, Moeeni H, Ebtehaj I, Zeynoddin M, Mahoammadian A, Gharabaghi B. New insights into soil temperature time series modeling: linear or non-linear? Theor Appl Climatol. 2019;135(3–4):1157–77.

    Google Scholar 

  45. Ebtehaj I, Bonakdari H. Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resour Manag. 2014;28(13):4765–79.

    Google Scholar 

  46. Kisi O, Ay M. Modelling COD concentration by using three different ANFIS techniques. Sixteenth International Water Technology Conference, Istanbul, Turkey, IWTC-16, 2013.

  47. Moradi F, Bonakdari H, Kisi O, Ebtehaj I, Shiri J, Gharabaghi B. Abutment scour depth modeling using Neuro-fuzzy embedded techniques. Mar Georesour Geotechnol. 2018;37(2):190–200.

    Google Scholar 

  48. Bezdec JC. Pattern Recognition with Fuzzy Objective Function Algorithms, vol. 12. New York: Plenum Press; 1981. https://doi.org/10.1007/978-1-4757-0450-1.

    Book  Google Scholar 

  49. Nadiri AA, Shokri S, Tsai FT-C, Asghari Moghaddam A. Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model. J Clean Prod. 2018;180:539–49.

    CAS  Google Scholar 

  50. Yaseen ZM, Ramal MM, Diop L, Jaafar O, Demir V, Kisi O. Hybrid adaptive Neuro-fuzzy models for water quality index estimation. Water Resour Manag. 2018;32(7):2227–45.

    Google Scholar 

  51. Taylor KE. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos. 2001;106:7183–92.

    Google Scholar 

  52. Gharabaghi B, Sattar A. Empirical models for longitudinal dispersion coefficient in natural streams. J Hydrol. 2019;575:1359–61.

    Google Scholar 

  53. Bonakdari H, Zaji AH, Gharabaghi B, Ebtehaj I, Moazamnia M. More accurate prediction of the complex velocity field in sewers based on uncertainty analysis using extreme learning machine technique. ISH J Hydraul Eng:1–12. https://doi.org/10.1080/09715010.2018.1498753.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari.

Ethics declarations

Conflict of interest declaration

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, K., Bonakdari, H., Ebtehaj, I. et al. A novel stochastic wastewater quality modeling based on fuzzy techniques. J Environ Health Sci Engineer 18, 1099–1120 (2020). https://doi.org/10.1007/s40201-020-00530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00530-8

Keywords

Navigation