Skip to main content

Advertisement

Log in

Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Effluents produced in the textile industries are important sources of water pollution due to the presence of toxic dyes, auxiliary chemicals, organic substances etc. Recycling of such industrial wastewater is one major aspect of sustainable water management; hence present study is focused on an eco-friendly process development for reclamation of higher loading textile wastewater.

Method

Industrial effluent samples with varying loading were collected from textile processing units located in and around Kolkata city. Vegetable waste collected from local market was utilized to prepare an efficient biochar for elimination of the recalcitrant dyes. Prior to adsorption, ceramic ultrafiltration (UF) process was used for reduction of the organic loading and other suspended and dissolved components.

Results

A remarkably high BET surface area of 1216 m2g−1 and enhanced pore volume of 1.139 cm3g−1 was observed for biochar. The maximum adsorption capacity obtained from the Langmuir isotherm was about 300 mg.g−1. The combined process facilitated >99% removal of dyes and 77–80% removal of chemical oxygen demand (COD) from the various samples of effluent. The treated effluent was found suitable to discharge or reuse in other purposes. About 95% of dye recovery was achieved during biochar regeneration with acetone solution. The dye loaded spent biochar was composted with dry leaves and garden soil as bulking agent. Prepared compost could achieve the recommended parameters with high nutritional value after 45 days.

Conclusions

The overall study showed potential of the proposed process towards treatment of toxic dye loaded textile effluent in an environment friendly and sustainable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rangabhashiyam S, Anu N, Selvaraju N. Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. J Environ Chem Eng. 2013;1:629–41. https://doi.org/10.1016/j.jece.2013.07.014.

    Article  CAS  Google Scholar 

  2. Volmajer Valh J, Majcen Le Marechal A, Vajnhandl S, Jeric T, Simon E. Water in the textile industry. In: Reference module in earth systems and environmental sciences, from treatise on water science, 2011; 4: 685–706.

  3. De Gisi S, Notarnicola M. Industrial wastewater treatment. Encycloped Sustain Technol. 2017;4. https://doi.org/10.1016/B978-0-12-409548-9.10167-8.

  4. GilPavas E, Dobrosz-Gómez I, Gómez-García MA. Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci Total Environ. 2019;651:551–60. https://doi.org/10.1016/j.scitotenv.2018.09.125.

    Article  CAS  Google Scholar 

  5. Buscio V, Marin MJ, Crespi M, Bouzan CG. Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chem Eng J. 2015;265:122–8. https://doi.org/10.1016/j.cej.2014.12.057.

    Article  CAS  Google Scholar 

  6. Bessegato GG, Cardoso JC, da Silva BF, da Silva MVB. Combination of Photoelectron catalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Appl Catal B. 2016;180:161–8. https://doi.org/10.1016/j.apcatb.2015.06.013.

    Article  CAS  Google Scholar 

  7. Grilli S, Piscitelli D, Mattioli D, Casu S, Spagni A. Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration. J Environ Sci Heal A. 2011;46(13):1512–8. https://doi.org/10.1080/10978526.2011.609078.

    Article  CAS  Google Scholar 

  8. Hammami A, Charcosset C, Amar RRB. Performances of continuous adsorption-ultrafiltration hybrid process for AO7 dye removal from aqueous solution and real textile wastewater treatment. J Membr Sci Technol. 2017;7:1–8. https://doi.org/10.4172/2155-9589.1000171.

    Article  CAS  Google Scholar 

  9. Bhattacharya P, Ghosh S, Swarnakar S, Mukhopadhyay A. Reuse of textile effluent for dyeing using combined technology of ceramic microfiltration and surface treated sugarcane bagasse: toxicity evaluation using Channa punctatus as model. Desalination Water Treat. 2014;54:715–35. https://doi.org/10.1080/19443994.2014.887035.

    Article  CAS  Google Scholar 

  10. De Gisi S, Lofrano G, Grassi M, Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol. 2016;9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002.

    Article  CAS  Google Scholar 

  11. Li S, Yang X, Gao S, Chuh AH, Lin CSK. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowialipolytica. J Clean Prod. 2018;179:151–9. https://doi.org/10.1016/j.jclepro.2018.01.081.

    Article  CAS  Google Scholar 

  12. Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A. Harvesting zero waste from co-digested fruit and vegetable peels via integrated fermentation and pyrolysis processes. Environ Sci Pollut Res. 2019;26:429–38. https://doi.org/10.1007/s11356-019-04647-8.

    Article  CAS  Google Scholar 

  13. Wu J, Yang J, Feng P, Huang G, Xu C, Lin B. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere. 2020;246:125734. https://doi.org/10.1016/j.chemosphere.2019.125734.

    Article  CAS  Google Scholar 

  14. Sewu DD, Boakye P, Woo SH. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour Technol. 2017;224:206–13. https://doi.org/10.1016/j.biortech.2016.11.009.

    Article  CAS  Google Scholar 

  15. Supriya S, Sriram G, Ngaini Z, Kavitha C, Kurkuri M, De Padova IP, et al. The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valori. 2019;11:3821–31. https://doi.org/10.1007/s12649-019-00675-0.

    Article  CAS  Google Scholar 

  16. Bhatnagar A, Sillanpää M, Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification — a review. Chem Eng J. 2015;270:244–71. https://doi.org/10.1016/j.cej.2015.01.135.

    Article  CAS  Google Scholar 

  17. APHA. (American public health association). Standard methods for the examination of water and wastewater. Washington: American Water Works Association/Water Environment Federation; 2005.

    Google Scholar 

  18. Boehm HP. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002;40:145–9. https://doi.org/10.1016/s0008-6223(01)00165-8.

    Article  CAS  Google Scholar 

  19. Zhang L, Sun X. Addition of seaweed and bentonite accelerates the two-stage composting of green waste. Bioresour Technol. 2017;243:154–62. https://doi.org/10.1016/j.biortech.2017.06.099.

    Article  CAS  Google Scholar 

  20. Lu YK. Analytical methods on soil Agrochemistry. Beijing: China Agriculture Technology Press; 2000.

    Google Scholar 

  21. Arias O, Viña S, Uzal M, Soto M. Composting of pig manure and forest green waste amended with industrial sludge. Sci Total Environ. 2017;586:1228–36. https://doi.org/10.1016/j.scitotenv.2017.02.118.

    Article  CAS  Google Scholar 

  22. Tiquia SM, Tam NFY, Hodgkiss IJ. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pollut. 1996;93:249–56. https://doi.org/10.1016/s0269-7491(96)00052-8.

    Article  CAS  Google Scholar 

  23. Zucconi F, Pera A, Forte M, de Bertoldi M. Evaluating toxicity of immature compost. Biocycle. 1981; 22: 54–57.

  24. Rich N, Bharti A, Kumar S. Effect of bulking agents and cow dung as inoculant on vegetable waste compost quality. Bioresour Technol. 2017;252:83–90. https://doi.org/10.1016/j.biortech.2017.12.080.

    Article  CAS  Google Scholar 

  25. Wei YS, Fan YB, Wang MJ, Wang JS. Composting and compost application in China. Resour Conserv Recycl. 2000;130:277–300. https://doi.org/10.1016/s0921-3449(00)00066-5.

    Article  Google Scholar 

  26. Kebibeche H, Khelil O, Kacem M, Harche MK. Addition of wood sawdust during the co-composting of sewage sludge and wheat straw influences seeds germination. Ecotoxicol Environ Saf. 2019;168:423–30. https://doi.org/10.1016/j.ecoenv.2018.10.075.

    Article  CAS  Google Scholar 

  27. Zhang H, Liu X, He G, Zhang X, Bao S, Hu W. Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction. J Power Sources. 2015;279:252–8. https://doi.org/10.1016/j.jpowsour.2015.01.016.

    Article  CAS  Google Scholar 

  28. Beltrame KK, Cazetta AL, de Souza PSC, Spessato L, Silva TL, Almeida VC. Adsorption of caffeine on mesoporous activated carbon fibres prepared from pineapple plant leaves. Ecotoxicol Environ Saf. 2018;147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034.

    Article  CAS  Google Scholar 

  29. Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. J Am Chem Soc. 1951;73:373–80. https://doi.org/10.1021/ja01145a126.

    Article  CAS  Google Scholar 

  30. Baytar O, Sahin O, Saka C, Agrak S. Characterization of microwave and conventional heating onthe pyrolysis of pistachio shells for the adsorption of methylene blue and iodine. Anal Lett. 2017;51:2205–20. https://doi.org/10.1080/00032719.2017.1415920.

    Article  CAS  Google Scholar 

  31. Zbair M, Anfar Z, Khallok H, Ahsaine HA, Ezahri M, Elalem N. Adsorption kinetics and surface modeling of aqueous methylene blue onto activated carbonaceous wood sawdust. Fuller Nanotub Car N. 2018;26:433–42. https://doi.org/10.1080/1536383X.2018.1447564.

    Article  CAS  Google Scholar 

  32. Basu S, Ghosh G, Saha S. Adsorption characteristics of phosphoric acid induced activation of bio-carbon: equilibrium, kinetics, thermodynamics and batch adsorber design. Process Saf Environ. 2018;117:125–42. https://doi.org/10.1016/j.psep.2018.04.015.

    Article  CAS  Google Scholar 

  33. Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J. 2008;140:32–42. https://doi.org/10.1016/j.cej.2007.08.032.

    Article  CAS  Google Scholar 

  34. Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination. 2011;276:53–9. https://doi.org/10.1016/j.desal.2011.03.013.

    Article  CAS  Google Scholar 

  35. Ramrakhiani L, Halder A, Majumder A, Mandal AK, Majumdar S, Ghosh S. Industrial waste derived biosorbent for toxic metal remediation: mechanism studies and spent biosorbent management. Chem Eng J. 2017;308:1048–64. https://doi.org/10.1016/j.cej.2016.09.145.

    Article  CAS  Google Scholar 

  36. Silva TL, Cazetta AL, Souza PSC, Zhang T, Asefa T, Almeida VC. Mesoporous activated carbon fibres synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod. 2018;171:482–90. https://doi.org/10.1016/j.jclepro.2017.10.034.

    Article  CAS  Google Scholar 

  37. Khan TA, Khan EA, Khan S. Adsorptive uptake of basic dyes from aqueous solution by novel brown linseed deoiled cake activated carbon: equilibrium isotherms and dynamics. J Environ Chem Eng. 2016;4:3084–95. https://doi.org/10.1016/j.jece.2016.06.009.

    Article  CAS  Google Scholar 

  38. Yu L, Luo YM. The adsorption mechanism of anionicand cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J Environ Chem Eng. 2014;2:220–9. https://doi.org/10.1016/j.jece.2013.12.016.

    Article  CAS  Google Scholar 

  39. Sayğılı H, Güzel F. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod. 2016;113:995–1004. https://doi.org/10.1016/j.jclepro.2015.12.055.

    Article  CAS  Google Scholar 

  40. Xu W, Zhao Q, Wang R, Jiang Z, Zhang Z, Gao X, et al. Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology. Vac. 2017;141:307–15. https://doi.org/10.1016/j.vacuum.2017.04.031.

    Article  CAS  Google Scholar 

  41. Liu X, He S, Yu X, Bai Y, Ye L, Wang B, et al. Net-like porous activated carbon materials from shrimp shell by solution-processed carbonization and H3PO4 activation for methylene blue adsorption. Powder Technol. 2018;326:181–9. https://doi.org/10.1016/j.powtec.2017.12.034.

    Article  CAS  Google Scholar 

  42. Sharma A, Syed Z, Brighu U, Gupta AB, Ram C. Adsorption of textile wastewater on alkali-activated sand. J Clean Prod. 2019;220:23–32. https://doi.org/10.1016/j.jclepro.2019.01.236.

    Article  CAS  Google Scholar 

  43. Kumar PS, Varjani SJ, Suganya S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: kinetic and isotherm modelling. Bioresour Technol. 2017;250:716–22. https://doi.org/10.1016/j.biortech.2017.11.097.

    Article  CAS  Google Scholar 

  44. Site AD. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data. 2001;30:187–439. https://doi.org/10.1063/1.1347984.

    Article  CAS  Google Scholar 

  45. Kumar RV, Goswami L, Pakshirajan K, Pugazhenthi G. Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J Water Process Eng. 2016;13:168–75. https://doi.org/10.1016/j.jwpe.2016.08.012.

    Article  Google Scholar 

  46. Lyu H, Ling Y, Fan J, Chen Y, Yu Y, Xie Z. Preparation of ionic liquid-functionalized layered double hydroxide via thiol-ene click chemistry for highly efficient removal of azo dyes during broad pH range. J Clean Prod. 2019;211:1023–33. https://doi.org/10.1016/j.jclepro.2018.11.260.

    Article  CAS  Google Scholar 

  47. Friha I, Bradai M, Johnson D, Hilal N, Loukil S, Ben Amor F, et al. Treatment of textile wastewater by submerged membrane bioreactor: in vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. J Environ Manag. 2016;160:184–92. https://doi.org/10.1016/j.jenvman.2015.06.008.

    Article  CAS  Google Scholar 

  48. Ustun GK, Solmaz SKA, Birgul A. Regeneration of industrial district wastewater using a combination of Fenton process and ionexchange—a case study. Resour Conserv Recycl. 2007;52:425–40. https://doi.org/10.1016/j.resconrec.2007.05.006.

    Article  Google Scholar 

  49. Lu PJ, Lin HC, Yu WT, Chern JM. J Taiwan Inst Chem E. 2011;42:305–11. https://doi.org/10.1016/j.jtice.2010.06.001.

    Article  CAS  Google Scholar 

  50. Zhao B, O’connor D, Zhang J, Peng T, Shen Z, Tsang DCW, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod. 2017;174:977–87. https://doi.org/10.1016/j.jclepro.2017.11.013.

    Article  CAS  Google Scholar 

  51. Gao M, Liang F, Yu A, Li B, Yang L. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere. 2010;78:614–9. https://doi.org/10.1016/j.chemosphere.2009.10.056.

    Article  CAS  Google Scholar 

  52. Yang L, Zhang S, Wen Q, Chen Z, Wang Y. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresour Technol. 2016;204:185–91. https://doi.org/10.1016/j.biortech.2016.01.004.

    Article  CAS  Google Scholar 

  53. Kumar M, Ou YL, Lin JG. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010;30:602–9. https://doi.org/10.1016/j.wasman.2009.11.023.

    Article  CAS  Google Scholar 

  54. Yahya A, Sye CP, Ishola TA, Suryanto H. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches. Bioresour Technol. 2010;101:8736–41. https://doi.org/10.1016/j.biortech.2010.05.073.

    Article  CAS  Google Scholar 

  55. Zainudin MHM, Hassan MA, Tokura M, Shirai Y. Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge. Bioresour Technol. 2013;147:632–5. https://doi.org/10.1016/j.biortech.2013.08.061.

    Article  CAS  Google Scholar 

  56. Al-malack MH. Technical and economic aspects of crossflow microfiltration. Desalination. 2003;150:89–94. https://doi.org/10.1016/S0011-9164(03)00242-X.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Department of Science and Technology, Government of India vide Grant No. DST/TSG/NTS/2015/74-G dated 22.07.2016 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourja Ghosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, B., Ramrakhiani, L., Kar, S. et al. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar. J Environ Health Sci Engineer 18, 973–992 (2020). https://doi.org/10.1007/s40201-020-00520-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00520-w

Keywords

Navigation