Skip to main content
Log in

Risk prediction models for postpartum glucose intolerance in women with a history of gestational diabetes mellitus: a scoping review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objective

The objective of this scoping review was to investigate the effectiveness and limitations of risk prediction models for postpartum glucose intolerance in women with gestational diabetes mellitus (GDM). The aim was to provide valuable insights for healthcare professionals in the development of robust risk prediction models.

Methods

A comprehensive literature search was conducted across multiple databases, including PubMed, EBSCO, Web of Science Core Collection, Ovid Full-Text Medical Journal Database, ProQuest, Elsevier ClinicalKey, China National Knowledge Infrastructure, China Biology Medicine, and WanFang Database, spanning from January 1990 to July 2023. To assess the quality of the included models, the Predictive Model Risk of Bias Assessment Tool (PROBAST) was employed.

Results

Fourteen relevant studies were identified and included in the final review, all focusing on model development. The discrimination ability of the included models ranged from 0.725 to 0.940, indicating satisfactory prediction accuracy. However, a notable limitation was that nine of these models (64.3%) did not provide clear guidelines on the selection of potential predictors. Furthermore, only six models (42.86%) underwent internal validation, with none undergoing external validation. A high risk of bias was observed across the included models. Logistic regression, Cox regression, and machine learning were the primary methods employed in the construction of these models.

Conclusion

The risk prediction models included in this review demonstrated favorable prediction accuracy. However, due to variations in construction methodologies, direct comparison of their performance is challenging. These models exhibited certain shortcomings, such as inadequate handling of missing data and a lack of internal and external validation, resulting in a high risk of bias. Therefore, it is recommended that these models be updated and externally validated. The development of prospective, multi-center studies is encouraged to construct predictive models with low risk of bias and high clinical applicability, ultimately guiding evidence-based clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data is contained within the manuscript file and additional file.

References

  1. Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. https://doi.org/10.1016/j.diabres.2018;02.023.

    Article  CAS  PubMed  Google Scholar 

  2. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.

    Google Scholar 

  3. Alejandro EU, Mamerto TP, Chung G, et al. Gestational diabetes mellitus: a harbinger of the vicious cycle of diabetes. Int J Mol Sci. 2020;21(14):5003. https://doi.org/10.3390/ijms21145003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomes D, von Kries R, Delius M, et al. Late-pregnancy dysglycemia in obese pregnancies after negative testing for gestational diabetes and risk of future childhood overweight: an interim analysis from a longitudinal mother-child cohort study. PLoS Med. 2018;15(10):e1002681. https://doi.org/10.1371/journal.pmed.1002681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green JB. Cardiovascular consequences of gestational diabetes. Circulation. 2021;143(10):988–90. https://doi.org/10.1161/CIRCULATIONAHA.120.052995.

    Article  CAS  PubMed  Google Scholar 

  6. El Ouahabi H, Doubi S, Boujraf S, et al. Gestational diabetes and risk of developing postpartum type 2 diabetes: how to improve follow-up? Int J Prev Med. 2019;10:51. https://doi.org/10.4103/ijpvm.IJPVM_3_17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Olmos P, Borzone G, Poblete A. Basal glucose on tolerance test during pregnancy predicts impaired fasting glucose and type 2 diabetes within 2 months after gestational diabetes. Can J Diabetes. 2021;45(2):122–8. https://doi.org/10.1016/j.jcjd.2020.06.008.

    Article  PubMed  Google Scholar 

  8. Jotic AZ, Stoiljkovic MM, Milicic TJ, et al. Prevalence and metabolic predictors for early diagnosed prediabetes in women with previous gestational diabetes: observational cohort study. Diabetes Ther. 2021;12(10):2691–700. https://doi.org/10.1007/s13300-021-01144-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellamy L, Casas JP, Hingorani AD, et al. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–9. https://doi.org/10.1016/S0140-6736(09)60731-5.

    Article  CAS  PubMed  Google Scholar 

  10. Vounzoulaki E, Khunti K, Abner SC, et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ. 2020;369:m1361. https://doi.org/10.1136/bmj.m1361.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Szmuilowicz ED, Josefson JL, Metzger BE. Gestational diabetes mellitus. Endocrinol Metab Clin N Am. 2019;48(3):479–93. https://doi.org/10.1016/j.ecl.2019.05.001.

    Article  Google Scholar 

  12. Au EH, Francis A, Bernier-Jean A, et al. Prediction modeling-part 1: regression modeling. Kidney Int. 2020;97(5):877–84. https://doi.org/10.1016/j.kint.2020.02.007.

    Article  PubMed  Google Scholar 

  13. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry. 2020;77(5):534–40. https://doi.org/10.1001/jamapsychiatry.2019.3671.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bianchi C, de Gennaro G, Brocchi A, et al. Risk factors associated with postpartum impaired glucose regulation in women with previous gestational diabetes. J Diabetes Complicat. 2021;35(4):107854. https://doi.org/10.1016/j.jdiacomp.2021.107854.

    Article  CAS  Google Scholar 

  15. Lai M, Fang F, Ma Y, et al. Elevated Midtrimester triglycerides as a biomarker for postpartum hyperglycemia in gestational diabetes. J Diabetes Res. 2020;2020:3950652. https://doi.org/10.1155/2020/3950652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muche AA, Olayemi OO, Gete YK. Predictors of postpartum glucose intolerance in women with gestational diabetes mellitus: a prospective cohort study in Ethiopia based on the updated diagnostic criteria. BMJ Open. 2020;10(8):e036882. https://doi.org/10.1136/bmjopen-2020-036882.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arksey H, O'Malley L. Scoping studies:towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. https://doi.org/10.1080/1364557032000119616.

    Article  Google Scholar 

  18. Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of Bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170(1):W1–W33. https://doi.org/10.7326/M18-1377.

    Article  PubMed  Google Scholar 

  19. Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9. https://doi.org/10.1016/s0895-4356(96)00236-3.

    Article  CAS  PubMed  Google Scholar 

  20. van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: beyond events per variable criteria. Stat Methods Med Res. 2019;28(8):2455–74. https://doi.org/10.1177/0962280218784726.

    Article  PubMed  Google Scholar 

  21. Finazzi S, Poole D, Luciani D, et al. Calibration belt for quality-of-care assessment based on dichotomous outcomes. PLoS One. 2011;6(2):e16110. https://doi.org/10.1371/journal.pone.0016110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kondo M, Nagao Y, Mahbub MH, et al. Factors predicting early postpartum glucose intolerance in Japanese women with gestational diabetes mellitus: decision-curve analysis. DiabetMed. 2018;35(8):1111–7. https://doi.org/10.1111/dme.13657.

    Article  CAS  Google Scholar 

  24. McElnay JC, Elnour AA. Risk factor model for developing postpartum diabetes mellitus in patients with gestational diabetes mellitus. Int J Med. 2006. https://www.priory.com/med/postpartumdiabetes.htm.

  25. Bartáková V, Barátová B, Pácal L, et al. Development of a new risk score for stratification of women with gestational diabetes mellitus at high risk of persisting postpartum glucose intolerance using routinely assessed parameters. Life (Basel). 2021;11(6):464. https://doi.org/10.3390/life11060464.

    Article  CAS  PubMed  Google Scholar 

  26. Bengtson AM, Dice ALE, Clark MA, et al. Predicting progression from gestational diabetes to impaired glucose tolerance using peri-delivery data: an observational study. Am J Perinatol. 2022. https://doi.org/10.1055/a-1877-9587.

  27. Allalou A, Nalla A, Prentice KJ, et al. A predictive metabolic signature for the transition from gestational diabetes mellitus to type 2 diabetes. Diabetes. 2016;65(9):2529–39. https://doi.org/10.2337/db15-1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Leng J, Liu H, et al. Nomograms for incident risk of postpartum type 2 diabetes in Chinese women with prior gestational diabetes mellitus. Clin Endocrinol. 2019;90(3):417–24. https://doi.org/10.1111/cen.13863.

    Article  CAS  Google Scholar 

  29. Man B, Schwartz A, Pugach O, et al. A clinical diabetes risk prediction model for prediabetic women with prior gestational diabetes. PLoS One. 2021;16(6):e0252501. https://doi.org/10.1371/journal.pone.0252501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwak SH, Choi SH, Kim K, et al. Prediction of type 2 diabetes in women with a history of gestational diabetes using a genetic risk score. Diabetologia. 2013;56(12):2556–63. https://doi.org/10.1007/s00125-013-3059-x.

    Article  PubMed  Google Scholar 

  31. Kumar M, Ang LT, Ho C, et al. Machine learning-derived prenatal predictive risk model to guide intervention and prevent the progression of gestational diabetes mellitus to type 2 diabetes: prediction model development study. JMIR Diabetes. 2022;7(3):e32366. https://doi.org/10.2196/32366.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ignell C, Ekelund M, Anderberg E, et al. Model for individual prediction of diabetes up to 5 years after gestational diabetes mellitus. Springerplus. 2016;5:318. https://doi.org/10.1186/s40064-016-1953-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang XM, Gao Y, Eriksson JG, et al. Metabolic signatures in the conversion from gestational diabetes mellitus to postpartum abnormal glucose metabolism: a pilot study in Asian women. Sci Rep. 2021;11(1):16435. https://doi.org/10.1038/s41598-021-95903-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joglekar MV, Wong WKM, Ema FK, et al. Postpartum circulating microRNA enhances prediction of future type 2 diabetes in women with previous gestational diabetes. Diabetologia. 2021;64(7):1516–26. https://doi.org/10.1007/s00125-021-05429-z.

    Article  CAS  PubMed  Google Scholar 

  35. Köhler M, Ziegler AG, Beyerlein A. Development of a simple tool to predict the risk of postpartum diabetes in women with gestational diabetes mellitus. Acta Diabetol. 2016;53(3):433–7. https://doi.org/10.1007/s00592-015-0814-0.

    Article  PubMed  Google Scholar 

  36. Li H, Liu M. Cohort studies in health management research. Chin J Health Manag. 2019;13(3):268–72. https://doi.org/10.3760/cma.j.issn.1674-0815.2019.03.021.

    Article  Google Scholar 

  37. Gu H, Wang J, Zhou Z, et al. Clinical predictive models: construction. Chin J Evid-Bases Cardiovasc Med. 2019;11(1):14–16,23. https://doi.org/10.3969/j.issn.1674-4055.2019.01.04.

    Article  Google Scholar 

  38. Liu Z, Zhang Q, Liu L, et al. Risk factors associated with early postpartum glucose intolerance in women with a history of gestational diabetes mellitus: a systematic review and meta-analysis. Endocrine. 2023;16. https://doi.org/10.1007/s12020-023-03472-x.

  39. Kawasaki M, Arata N, Sakamoto N, et al. Risk factors during the early postpartum period for type 2 diabetes mellitus in women with gestational diabetes. Endocr J. 2020;67:427–37. https://doi.org/10.1507/endocrj.EJ19-0367.

    Article  PubMed  Google Scholar 

  40. Quansah DY, Gross J, Mbundu-Ilunga R, et al. The utility of diagnostic tests in the detection and prediction of glucose intolerance in the early and late postpartum period in women after gestational diabetes: a longitudinal cohort study. Diabetol Metab Syndr. 2021;13(1):31. https://doi.org/10.1186/s13098-021-00650-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25(10):1862–8. https://doi.org/10.2337/diacare.25.10.1862.

    Article  PubMed  Google Scholar 

  42. Yefet E, Schwartz N, Sliman B, et al. Good glycemic control of gestational diabetes mellitus is associated with the attenuation of future maternal cardiovascular risk: a retrospective cohort study. Cardiovasc Diabetol. 2019;18(1):75. https://doi.org/10.1186/s12933-019-0881-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ngiam KY, Khor IW. Big data and machine learning algorithms for healthcare delivery. Lancet Oncol. 2019;20(5):e262–73. https://doi.org/10.1016/S1470-2045(19)30149-4.

    Article  PubMed  Google Scholar 

  44. Austin PC, White IR, Lee DS, et al. Missing data in clinical research: a tutorial on multiple imputation. Can J Cardiol. 2021;37(9):1322–31. https://doi.org/10.1016/j.cjca.2020.11.010.

    Article  PubMed  Google Scholar 

  45. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. https://doi.org/10.1136/bmj.g7594.

    Article  PubMed  Google Scholar 

  46. Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol. 2016;69:245–7. https://doi.org/10.1016/j.jclinepi.2015.04.005.

    Article  PubMed  Google Scholar 

  47. Wang J, Zhang Z, Zhou Z, et al. Clinical prediction models: model validation. Chin J Evid-Bases Cardiovasc Med. 2019;11(02):141–4. https://doi.org/10.3969/j.issn.1674-4055.2019.02.04.

    Article  Google Scholar 

  48. Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8. https://doi.org/10.1136/heartjnl-2011-301247.

    Article  PubMed  Google Scholar 

  49. Luo JC, Zhao QY, Tu GW. Clinical prediction models in the precision medicine era: old and new algorithms. Ann Transl Med. 2020;8(6):274. https://doi.org/10.21037/atm.2020.02.63.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–74. https://doi.org/10.1177/0272989X06295361.

    Article  Google Scholar 

  51. Van Calster B, Wynants L, Verbeek JFM, et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol. 2018;74(6):796–804. https://doi.org/10.1016/j.eururo.2018.08.038.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to the National Natural Science Foundation of China for supporting this research (project number: 71904133).

Funding

This work was supported by the National Natural Science Foundation of China for supporting this research (project number: 71904133).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zhe Liu, Huiziqiang Zhang and Nan Jia. Zhe Liu drafted the work and Weiwei Liu revised it critically for important intellectual content. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weiwei Liu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jia, N., Zhang, Q. et al. Risk prediction models for postpartum glucose intolerance in women with a history of gestational diabetes mellitus: a scoping review. J Diabetes Metab Disord (2023). https://doi.org/10.1007/s40200-023-01330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-023-01330-1

Keywords

Navigation