Skip to main content
Log in

Dynamic Recrystallization and Texture Evolution of GW94 Mg Alloy During Multi- and Unidirectional Impact Forging

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Multi- and unidirectional impact forgings were successfully applied to a (GW94) Mg–RE alloy. The microstructure and texture evolution were investigated systematically. The obtained results indicated that during unidirectional impact forging, a bimodal chain deform microstructure was sustained till last forging pass, whereas {10–12} extension twins-assisted continuous dynamic recrystallization took place during the multidirectional impact forging (MDIF). The coalescence and intersection of {10–12} extension twins during MDIF efficiently refined the original coarse grains and led to an almost recrystallized homogeneous microstructure. The texture analysis demonstrated that unidirectional impact forging yielded out the strong basal texture; however, MDIF resulted in non-basal texture, which was attributed to the cooperative effects of continuous DRX, twinning, and MDIF itself during the deformation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Li, Mater. Sci. Eng., A 528, 7178 (2011)

    Article  Google Scholar 

  2. T. Peng, Q. Wang, J. Lin, M. Liu, H.J. Roven, Mater. Sci. Eng., A 528, 1143 (2011)

    Article  Google Scholar 

  3. M. Hong, S. Shah, D. Wu, R. Chen, X. Du, N. Hu, Y. Zhang, Met. Mater. Int. 22, 1091 (2016)

    Article  Google Scholar 

  4. D. Yin, Q. Wang, C. Boehlert, V. Janik, Metall. Mater. Trans. A 43, 3338 (2012)

    Article  Google Scholar 

  5. D. Yin, Q. Wang, C. Boehlert, V. Janik, Y. Gao, W. Ding, Mater. Sci. Eng., A 546, 239 (2012)

    Article  Google Scholar 

  6. T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61, 644 (2009)

    Article  Google Scholar 

  7. C. Xu, S. Xu, M. Zheng, K. Wu, E. Wang, S. Kamado, G. Wang, X. Lv, J. Alloys Compd. 524, 46 (2012)

    Article  Google Scholar 

  8. C. Xu, M. Zheng, S. Xu, K. Wu, E. Wang, S. Kamado, G. Wang, X. Lv, Mater. Sci. Eng., A 547, 93 (2012)

    Article  Google Scholar 

  9. S.S.A. Shah, D. Wu, W.H. Wang, R.S. Chen, Mater. Sci. Eng., A 702, 153 (2017)

    Article  Google Scholar 

  10. A. Belyakov, T. Sakai, H. Miura, Mater. Trans., JIM 41, 476 (2000)

    Article  Google Scholar 

  11. O. Sitdikov, T. Sakai, H. Miura, C. Hama, Mater. Sci. Eng., A 516, 180 (2009)

    Article  Google Scholar 

  12. H. Miura, T. Maruoka, X. Yang, J. Jonas, Scr. Mater. 66, 49 (2012)

    Article  Google Scholar 

  13. Y.Z. Wu, H.G. Yan, J.H. Chen, Y.G. Du, S.Q. Zhu, B. Su, Mater. Sci. Eng., A 556, 164–169 (2012)

    Article  Google Scholar 

  14. M. Jiang, H. Yan, R. Chen, J. Alloys Compd. 650, 399 (2015)

    Article  Google Scholar 

  15. Q. Ma, B. Li, E.B. Marin, S.J. Horstemeyer, Scr. Mater. 65, 823 (2011)

    Article  Google Scholar 

  16. S. Shah, D. Wu, W. Wang, R. Chen, Mater. Sci. Eng., A 702, 153 (2017)

    Article  Google Scholar 

  17. S. Zhu, H. Yan, X. Liao, S. Moody, G. Sha, Y. Wu, S. Ringer, Acta Mater. 82, 344 (2015)

    Article  Google Scholar 

  18. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian, Scr. Mater. 63, 985 (2010)

    Article  Google Scholar 

  19. L. Tang, Y. Zhao, N. Liang, R. Islamgaliev, R. Valiev, Y. Zhu, Mater. Sci. Eng., A 677, 68 (2016)

    Article  Google Scholar 

  20. J. Li, D. Wu, Q. Yang, R. Chen, J. Alloys Compd. 672, 27 (2016)

    Article  Google Scholar 

  21. L. Gao, R. Chen, E. Han, Mater. Sci. 44, 4443 (2009)

    Article  Google Scholar 

  22. A. Kaya, Fundam. Magnes. Alloy Metall. 33, 35 (2013)

    Google Scholar 

  23. M. Barnett, Z. Keshavarz, X. Ma, Metall. Mater. Trans. A 37, 2283 (2006)

    Article  Google Scholar 

  24. J.W. Christian, S. Mahajan, Prog. Mater Sci. 39, 1 (1995)

    Article  Google Scholar 

  25. L. Lu, J. Zhao, L. Liu, G. Wang, Mater. Sci. Technol. 32, 104 (2016)

    Article  Google Scholar 

  26. I. Basu, T. Al-Samman, Acta Mater. 96, 111 (2015)

    Article  Google Scholar 

  27. W.D. Callister Jr., D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (John Wiley & Sons, Hoboken, 2012)

    Google Scholar 

  28. T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, S. Suwas, Acta Mater. 60, 537 (2012)

    Article  Google Scholar 

  29. T. Al-Samman, G. Gottstein, Mater. Sci. Eng., A 490, 411 (2008)

    Article  Google Scholar 

  30. O. Sitdikov, R. Kaibyshev, Mater. Trans. 42, 1928 (2001)

    Article  Google Scholar 

  31. C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng., A 542, 127 (2012)

    Article  Google Scholar 

  32. X.-Y. Yang, Z.S. Ji, H. Miura, T. Sakai, Chin. J. Nonferr. Metal. 19, 55 (2009)

    Article  Google Scholar 

  33. E. Martín, J. Mater. Process. Technol. 143, 1 (2003)

    Article  Google Scholar 

  34. Q. Jin, S.Y. Shim, S.G. Lim, Scr. Mater. 55, 843 (2006)

    Article  Google Scholar 

  35. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, Ė. Martin, Acta Mater. 59, 2046 (2011)

    Article  Google Scholar 

  36. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)

    Article  Google Scholar 

  37. M. Wang, R. Xin, B. Wang, Q. Liu, Mater. Sci. Eng., A 528, 2941 (2011)

    Article  Google Scholar 

  38. L. Tang, C. Liu, Z. Chen, D. Ji, H. Xiao, Mater. Des. 50, 587 (2013)

    Article  Google Scholar 

  39. X.Y. Yang, Z.Y. Sun, X. Jie, H. Miura, T. Sakai, Chin. J. Nonferr Metal. 18, s200 (2008)

    Article  Google Scholar 

  40. D. Wu, R. Chen, W. Tang, E. Han, Mater. Des. 41, 306 (2012)

    Article  Google Scholar 

  41. L. Mackenzie, M. Pekguleryuz, Scr. Mater. 59, 665 (2008)

    Article  Google Scholar 

  42. N. Stanford, M. Barnett, Mater. Sci. Eng., A 496, 399 (2008)

    Article  Google Scholar 

  43. N. Stanford, Mater. Sci. Eng., A 527, 2669 (2010)

    Article  Google Scholar 

  44. N. Stanford, M. Barnett, Scr. Mater. 58, 179 (2008)

    Article  Google Scholar 

  45. Y. Shilun, G. Yonghao, L. Chuming, X. Hongchao, Mater. Sci. Forum 849, 181 (2016)

    Article  Google Scholar 

  46. H. Yan, R. Chen, E. Han, Mater. Charact. 62, 321 (2011)

    Article  Google Scholar 

  47. R. Von Mises, Appl. Math. Mech. 592, 8 (1928)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0301104), the National Natural Science Foundation of China (Nos. 51531002, 51301173 and 51601193), and the National Basic Research Program of China (“973 Program”, No. 2013CB632202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Wu or R. S. Chen.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.S.A., Jiang, M.G., Wu, D. et al. Dynamic Recrystallization and Texture Evolution of GW94 Mg Alloy During Multi- and Unidirectional Impact Forging. Acta Metall. Sin. (Engl. Lett.) 31, 923–932 (2018). https://doi.org/10.1007/s40195-018-0732-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0732-6

Keywords

Navigation