Skip to main content

Advertisement

Log in

Gradient Elastic–Plastic Properties of Expanded Austenite Layer in 316L Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The gradient mechanical properties, variation of stress with strain and surface cracking behavior of expanded austenite developed on 316L austenitic stainless steel were investigated by nanoindentation tests, X-ray residual stress analysis and scanning electron microscope observation in four-point bending tests. The results show that the plastic properties of the carburizing layer including true initial yield strengths and strain hardening exponents increase significantly from substrate to surface, while the true elastic modulus just improves slightly. Due to the onset of plastic flow, the residual stresses are almost equivalent to the true initial yield strengths from surface to the depth of ~ 10 μm. The results of four-point bending tests show that surface stress increases linearly with the increase in strain until the strain reaches ~ 1.0%, after that the plastic yield happens. The expanded austenite surface layer is brittle, and the cracks will be created at the strain of ~ 1.4%. The cracking stress is about ~ 2.4 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N. Agarwal, H. Kahn, A. Avishai, G. Michal, F. Ernst, A.H. Heuer, Acta Mater. 55, 5572 (2007)

    Article  Google Scholar 

  2. K. Tokaji, K. Kohyama, M. Akita, Int. J. Fatigue 26, 543 (2004)

    Article  Google Scholar 

  3. L. Ceschini, G. Minak, Surf. Coat. Technol. 202, 1778 (2008)

    Article  Google Scholar 

  4. Y. Sun, T. Bell, Wear 253, 689 (2002)

    Article  Google Scholar 

  5. J. Qu, P.J. Blau, L. Zhang, H. Xu, Wear 265, 1909 (2008)

    Article  Google Scholar 

  6. M. Faccoli, G. Cornacchia, R. Roberti, V. Bordiga, Metall. Ital. 4, 13 (2013)

    Google Scholar 

  7. R.H. Van Der Jagt, Heat Treat. Met. 27, 62 (2000)

    Google Scholar 

  8. D.S. Rong, Y. Jiang, J.M. Gong, Acta Metall. Sin. 51, 1516 (2015)

    Google Scholar 

  9. F. Ernst, Y. Cao, G.M. Michal, Acta Mater. 52, 1469 (2004)

    Article  Google Scholar 

  10. T.L. Christiansen, M.A.J. Somers, Metall. Mater. Trans. A 40, 1791 (2009)

    Article  Google Scholar 

  11. T.L. Christiansen, T.S. Hummelshøj, M.A.J. Somers, Surf. Eng. 26, 242 (2010)

    Article  Google Scholar 

  12. Y. Sun, L.Y. Chin, Surf. Eng. 18, 443 (2002)

    Article  Google Scholar 

  13. R.M. Souza, M. Ignat, C.E. Pinedo, A.P. Tschiptschin, Surf. Coat. Technol. 204, 1102 (2009)

    Article  Google Scholar 

  14. J.C. Stinville, J. Cormier, C. Templier, P. Villechaise, Mater. Sci. Eng. A 605, 51 (2014)

    Article  Google Scholar 

  15. Z.S. Ma, Y.C. Zhou, S.G. Long, C.S. Lu, J. Mater. Sci. Technol. 28, 626 (2012)

    Article  Google Scholar 

  16. Y.W. Peng, J.M. Gong, D.S. Rong, Y. Jiang, M.H. Fu, G. Yu, Acta Metall. Sin. 51, 1500 (2015). (in Chinese)

    Google Scholar 

  17. Y.W. Peng, J.M. Gong, Y. Jiang, M.H. Fu, D.S. Rong, Appl. Mech. Mater. 853, 178 (2017)

    Article  Google Scholar 

  18. G.M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, A.H. Heuer, Acta Mater. 54, 1597 (2006)

    Article  Google Scholar 

  19. M. Sadiq, J.S. Lecomte, M. Cherkaoui, J. Electron. Packag. 137, 031005 (2015)

    Article  Google Scholar 

  20. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  Google Scholar 

  21. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411 (1998)

    Article  Google Scholar 

  22. X. Xiao, D. Terentyev, Q.Y. Chen, L.R. Chen, L.R. Chen, A. Bakaev, H.L. Duan, Int. J. Plasticity 7(90), 212 (2017)

    Article  Google Scholar 

  23. M.X. Gu, C.Q. Sun, Z. Chen, T.C.A. Yeung, S. Li, C.M. Tan, Phys. Rev. B 75, 125403 (2007)

    Article  Google Scholar 

  24. Y.T. Cheng, C.M. Cheng, Philos. Mag. Lett. 78, 115 (1998)

    Article  Google Scholar 

  25. J.W. Li, X.J. Liu, L.W. Yang, X.D. Gao, D.S. Shang, X.J. Lin, Appl. Phys. Lett. 95, 031906 (2009)

    Article  Google Scholar 

  26. C.Q. Sun, B.K. Tay, S.P. Lau, X.W. Sun, J. Appl. Phys. 90, 2615 (2001)

    Article  Google Scholar 

  27. A. Leyland, A. Matthews, Wear 246, 1 (2000)

    Article  Google Scholar 

  28. D. Hoeft, B.A. Latella, K.T. Short, J. Phys. Condens. Mater. 17, 3547 (2005)

    Article  Google Scholar 

  29. D.R.G. Mitchell, D.J. Attard, G.A. Collins, K.T. Short, Surf. Coat. Technol. 165, 107 (2003)

    Article  Google Scholar 

  30. Y.T. Cheng, C.M. Cheng, Mater. Sci. Eng. R 44, 91 (2004)

    Article  Google Scholar 

  31. A. Bolshakov, G.M. Pharr, J. Mater. Res. 13, 1049 (1998)

    Article  Google Scholar 

  32. W. Li, X. Li, H. Dong, Acta Mater. 59, 5765 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported financially by the National Natural Science Foundation of China (Nos. 51475224 and 51605164) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 14KJA470002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, Y., Jia, YF. et al. Gradient Elastic–Plastic Properties of Expanded Austenite Layer in 316L Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 31, 831–841 (2018). https://doi.org/10.1007/s40195-018-0710-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0710-z

Keywords

Navigation