Skip to main content
Log in

Interpenetrated Magnesium–Tricalcium Phosphate Composite: Manufacture, Characterization and In Vitro Degradation Test

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium–tricalcium phosphate (Mg–TCP) composite and its evaluation under immersion test. In the study, TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration (CAMI) technique. The microstructure, composition, distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy, elemental chemical analysis and X-ray diffraction. The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI, even small pores below 2 μm have been filled with Mg, giving to the composite a good interpenetration. The degradation rate of the Mg–TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, W. Dietzel, N. Hort, Biomaterials 28, 2163 (2007)

    Article  Google Scholar 

  2. D. Pijocha, A. Zima, Z. Paszkiewicz, A. Ślósarczyk, Acta Bioeng. Biomech. 15, 53 (2013)

    Google Scholar 

  3. A.K. Khanra, H.C. Jung, S.H. Yu, K.S. Hong, K.S. Shin, Bull. Mater. Sci. 33, 43 (2010)

    Article  Google Scholar 

  4. K. Mensah-Darkwa, R.K. Gupta, D. Kumar, J. Mater. Sci. Technol. 29, 788 (2013)

    Article  Google Scholar 

  5. R.Z. LeGeros, J.P. LeGeros, Key Eng. Mat. 240–242, 3 (2003)

    Article  Google Scholar 

  6. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)

    Article  Google Scholar 

  7. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 12, 63 (2008)

    Article  Google Scholar 

  8. F. Witte, Acta Biomater. 23, S28 (2015)

    Article  Google Scholar 

  9. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials 26, 3557 (2005)

    Article  Google Scholar 

  10. Y. Chen, Z. Xu, C. Smith, J. Sankar, Acta Biomater. 10, 4561 (2014)

    Article  Google Scholar 

  11. A. Myrissa, N.A. Agha, Y. Lu, E. Martinelli, J. Eichler, G. Szakács, C. Kleinhans, R. Willumeit-Römer, U. Schäfer, A.M. Weinberg, Mater. Sci. Eng. 61, 865 (2016)

    Article  Google Scholar 

  12. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30, 484 (2009)

    Article  Google Scholar 

  13. M. Bohner, Injury 31, D37 (2000)

    Article  Google Scholar 

  14. H. Yuan, Z. Yang, Y. Li, X. Zhang, J.D. de Bruijn, K. de Groot, J. Mater. Sci. Mater. Med. 9, 723 (1998)

    Article  Google Scholar 

  15. J. Lu, M. Descamps, J. Dejou, G. Koubi, P. Hardouin, J. Lemaitre, J.P. Proust, J. Biomed. Mater. Res. A 63, 408 (2002)

    Article  Google Scholar 

  16. O. Gauthier, J.M. Bouler, E. Aguado, P. Pilet, G. Daculsi, Biomaterials 19, 133 (1998)

    Article  Google Scholar 

  17. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  Google Scholar 

  18. B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S. Ryu, S.S. Chung, K.W. Park, Biomaterials 21, 1291 (2000)

    Article  Google Scholar 

  19. X. Miao, L.P. Tan, L.S. Tan, X. Huang, Mater. Sci. Eng. 27, 274 (2007)

    Article  Google Scholar 

  20. J. Franco, P. Hunger, M.E. Launey, A.P. Tomsia, E. Saiz, Acta Biomater. 6, 218 (2010)

    Article  Google Scholar 

  21. A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, Acta Biomater. 27, 264 (2015)

    Article  Google Scholar 

  22. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Müller, Acta Biomater. 7, 907 (2011)

    Article  Google Scholar 

  23. J.A. Lewisw, J.E. Smay, J. Stuecker, J. Cerarano, J. Am. Ceram. Soc. 89, 3599 (2006)

    Article  Google Scholar 

  24. P. Miranda, A. Pajares, E. Saiz, A.P. Tomsia, F. Guiberteau, J. Biomed. Mater. Res. A 85, 218 (2008)

    Article  Google Scholar 

  25. S. Michna, W. Wua, J.A. Lewis, Biomaterials 26, 5632 (2005)

    Article  Google Scholar 

  26. P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Acta Biomater. 2, 457 (2006)

    Article  Google Scholar 

  27. D.R. Clarke, J. Am. Ceram. Soc. 75, 739 (1992)

    Article  Google Scholar 

  28. A. Mattern, B. Huchler, D. Staudenecker, R. Oberacker, A. Nagel, M.J. Hoffmann, J. Eur. Ceram. Soc. 24, 3399 (2004)

    Article  Google Scholar 

  29. K.M.S. Manu, L.A. Raag, T.P.D. Rajan, M. Gupta, B.C. Pai, Metall. Mater. Trans. B 47, 2799 (2016)

    Article  Google Scholar 

  30. S. Grasso, Y. Sakka, G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009)

    Article  Google Scholar 

  31. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng., R 63, 127 (2009)

    Article  Google Scholar 

  32. K. Konopka, M.C. Maj, K.J. Kurzydlowski, Mater. Charact. 51, 335 (2003)

    Article  Google Scholar 

  33. Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008)

    Article  Google Scholar 

  34. Alloy Phase Diagram, In: ASM handbook, vol. 3 (ASM International, The Materials Information Company, Geauga County, 1992)

    Google Scholar 

  35. A. Gozalian, A. Behnamghader, M. Daliri, A. Moshkforoush, Sci. Iran. F 18, 1614 (2011)

    Article  Google Scholar 

  36. I. Rocnáková, E.B. Montufar, M. Horynová, T. Zikmund, K. Novotný, L. Klakurková, L. Celko, G.L. Song, J. Kaiser, Corros. Sci. 104, 187 (2016)

    Article  Google Scholar 

  37. F. Shapiro, Eur. Cells Mater. 15, 53 (2008)

    Article  Google Scholar 

  38. S. Shadanbaz, G.J. Dias, Acta Biomater. 8, 20 (2012)

    Article  Google Scholar 

  39. F.Z. Cui, J.X. Yang, Y.P. Jiao, Q.S. Yin, Y. Zhang, I.S. Lee, Front. Mater. Sci. China 2, 143 (2008)

    Article  Google Scholar 

  40. L. Xu, F. Panc, G. Yu, L. Yang, E. Zhang, K. Yang, Biomaterials 30, 1512 (2009)

    Article  Google Scholar 

  41. G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie, and it is co-financed by the South Moravian Region under Grant No. 665860. Authors also acknowledge the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Program II. MCL acknowledges to Brno Ph.D. Talent scholarship founded by the Brno City Municipality. SDT acknowledges to Conacyt Mexico, through the project CB.177700, and COFAA-IPN (SIP project 20144443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar B. Montufar.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas-Luna, M., Tkachenko, S., Horynová, M. et al. Interpenetrated Magnesium–Tricalcium Phosphate Composite: Manufacture, Characterization and In Vitro Degradation Test. Acta Metall. Sin. (Engl. Lett.) 30, 319–325 (2017). https://doi.org/10.1007/s40195-017-0560-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0560-0

Keywords

Navigation