Skip to main content

Advertisement

Log in

Feasibility study of the Oxy Fuel Gas Welding (OFW) process in AA2024-T3 and GF/PEI composite hybrid joint

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The aim of the present study is evaluating the feasibility of Oxy Fuel Welding (OFW), using liquefied petroleum gas (LPG), for the joining of the glass fiber/polyetherimide composite and aluminum alloy 2024-T3, which combine the effectiveness of the joint and the low cost of operation. A statistical experimental design was performed to determine by OFW parameters, and the samples were welded and evaluated after Lap Shear Strength (LSS) loading as the planning response variable. For a better result of the joint strength, through the mechanical interlock between the laminate and the AA2024-T3, anodization process was performed. A maximum value of LSS with 6.20 MPa was obtained, with optimized values reaching 6.32 MPa. The results of mechanical resistance of the hybrid junction involving the anodized AA2024-T3 were doubled, being 13.80 MPa in relation to the maximum obtained from the joint without treatment, confirming the increase of the interaction between these two materials. This fact was confirmed by the roughness test and optical microscopy. After welding, the AA2024-T3 structure was converted into a new structure of equiaxed grains, from the recrystallization of the grains, the hardness value being reduced by approximately 24%. From the TGA and EDS analyses, there was no significant difference in the degradation temperature of the thermoplastic composite, confirming the efficacy of the process for hybrid joint AA2024-T3 and GF/PEI composite, and there is no indication of contaminant that could interfere with the quality of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Google Scholar 

  2. Zhang X, Chen Y, Hu J (2018) Recent advances in the development of aerospace materials. Prog Aerosp Sci 97:22–34. https://doi.org/10.1016/j.paerosci.2018.01.001

    Google Scholar 

  3. Holmes M (2017) Aerospace looks to composites for solutions. Reinf Plast 61:237–241. https://doi.org/10.1016/j.repl.2017.06.079

    Google Scholar 

  4. Magarajan U, Kumar SD, Arvind D, Kannan N, Hemanandan P (2018) A comparative study on the static mechanical properties of glass fibre vs glass-jute fibre polymer composite. Mater Today Proc 5:6711–6716. https://doi.org/10.1016/j.matpr.2017.11.328

    Google Scholar 

  5. Botelho EC, Silva RA, Pardini LC, Rezende MC (2004) Evaluation of adhesion of continuous fiber-epoxy composite/aluminum laminates. J Adhes Sci Technol 18:1799–1813. https://doi.org/10.1163/1568561042708377

    Google Scholar 

  6. Almeida JHS, Angrizani CC, Botelho EC, Amico SC (2015) Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites. Mater Des 65:789–795. https://doi.org/10.1016/j.matdes.2014.10.003

    Google Scholar 

  7. Almeida JHS, Souza SDB, Botelho EC, Amico SC (2016) Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning. J Mater Sci 51:1–12. https://doi.org/10.1007/s10853-016-9787-9

    Google Scholar 

  8. Costa ML, Botelho EC, Rezende MC (2006) Monitoring of cure kinetic prepreg and cure cycle modeling. J Mater Sci 41:4349–4356. https://doi.org/10.1007/s10853-006-6082-1

    Google Scholar 

  9. M’Saoubi R, Axinte D, Soo SL, Nobel C, Attia H, Kappmeyer G, Engin S, Sim WM (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann - Manuf Technol 64:557–580. https://doi.org/10.1016/j.cirp.2015.05.002

    Google Scholar 

  10. Masoumi Khalilabad M, Zedan Y, Texier D, Jahazi M, Bocher P (2018) Effect of tool geometry and welding speed on mechanical properties of dissimilar AA2198–AA2024 FSWed joint. J Manuf Process 34:86–95. https://doi.org/10.1016/j.jmapro.2018.05.030

    Google Scholar 

  11. Tekin E, Kapan Ö (2016) Composite manufacturing data management in aerospace industry. Procedia CIRP 41:1039–1042. https://doi.org/10.1016/j.procir.2015.12.058

    Google Scholar 

  12. Chen Q, Zhao Y, Zhou Z, Rahman A, Wu XF, Wu W, Xu T, Fong H (2013) Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Compos Part B Eng 44:1–7. https://doi.org/10.1016/j.compositesb.2012.09.005

    Google Scholar 

  13. Vijay N, Rajkumara V, Bhattacharjee P (2016) Assessment of composite waste disposal in aerospace industries. Procedia Environ Sci 35:563–570. https://doi.org/10.1016/j.proenv.2016.07.041

    Google Scholar 

  14. Panneerselvam K, Aravindan S, Noorul Haq A (2012) Study on resistance welding of glass fiber reinforced thermoplastic composites. Mater Des 41:453–459. https://doi.org/10.1016/j.matdes.2012.05.025

    Google Scholar 

  15. Anthony Xavior M, Ranganathan N, Prashantha Kumar HG, Joel J, Ashwath P (2018) Mechanical properties evaluation of hot extruded AA 2024 –Graphene Nanocomposites. Mater Today Proc 5:12519–12524. https://doi.org/10.1016/j.matpr.2018.02.233

    Google Scholar 

  16. Edwards NJ, Song W, Cimpoeru SJ, Ruan D, Lu G, Herzig N (2018) Mechanical and microstructural properties of 2024-T351 aluminium using a hat-shaped specimen at high strain rates. Mater Sci Eng A 720:203–213. https://doi.org/10.1016/j.msea.2018.02.049

    Google Scholar 

  17. Thai TT, Druart ME, Paint Y, Trinh AT, Olivier MG (2018) Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024 –T3. Prog Org Coat 121:53–63. https://doi.org/10.1016/j.porgcoat.2018.04.013

    Google Scholar 

  18. Ahn J, Chen L, He E, Dear JP, Davies CM (2018) Optimisation of process parameters and weld shape of high power Yb-fibre laser welded 2024-T3 aluminium alloy. J Manuf Process 34:70–85. https://doi.org/10.1016/j.jmapro.2018.05.028

    Google Scholar 

  19. M.A. Xavior, P. Ashwath, R. Rajendran, IMECE2015-50103, Proc. ASME 2015 Int. Mech. Eng. Congr. Expo. IMECE2015. (2015).

  20. André NM, Goushegir SM, Dos Santos JF, Canto LB, Amancio-Filho ST (2016) Friction Spot Joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly(phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms. Compos Part B Eng 94:197–208. https://doi.org/10.1016/j.compositesb.2016.03.011

    Google Scholar 

  21. Lionetto F, Morillas MN, Pappadà S, Buccoliero G, Fernandez Villegas I, Maffezzoli A (2018) Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos Part A Appl Sci Manuf 104:32–40. https://doi.org/10.1016/j.compositesa.2017.10.021

    Google Scholar 

  22. Karami Pabandi H, Movahedi M, Kokabi AH (2017) A new refill friction spot welding process for aluminum/polymer composite hybrid structures. Compos Struct 174:59–69. https://doi.org/10.1016/j.compstruct.2017.04.053

    Google Scholar 

  23. Lionetto F, Mele C, Leo P, D’Ostuni S, Balle F, Maffezzoli A (2018) Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum: mechanical and electrochemical characterization. Compos Part B Eng 144:134–142. https://doi.org/10.1016/j.compositesb.2018.02.026

    Google Scholar 

  24. Haddadi F, Abu-Farha F (2015) Microstructural and mechanical performance of aluminium to steel high power ultrasonic spot welding. J Mater Process Technol 225:262–274. https://doi.org/10.1016/j.jmatprotec.2015.06.019

    Google Scholar 

  25. Lionetto F, Balle F, Maffezzoli A (2017) Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites. J Mater Process Technol 247:289–295. https://doi.org/10.1016/j.jmatprotec.2017.05.002

    Google Scholar 

  26. Zhang CQ, Robson JD, Prangnell PB (2016) Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4. J Mater Process Technol 231:382–388. https://doi.org/10.1016/j.jmatprotec.2016.01.008

    Google Scholar 

  27. Stavrov D, Bersee HEN (2005) Resistance welding of thermoplastic composites-an overview. Compos Part A Appl Sci Manuf 36:39–54. https://doi.org/10.1016/S1359-835X(04)00182-4

    Google Scholar 

  28. Abibe AB, Amancio-Filho ST, dos Santos JF, Hage E (2013) Mechanical and failure behaviour of hybrid polymer-metal staked joints. Mater Des 46:338–347. https://doi.org/10.1016/j.matdes.2012.10.043

    Google Scholar 

  29. Balle F, Wagner G, Eifler D (2009) Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites. Adv Eng Mater 11:35–39. https://doi.org/10.1002/adem.200800271

    Google Scholar 

  30. Jung DJ, Cheon J, Na SJ (2016) Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel. Mater Des 99:1–9. https://doi.org/10.1016/j.matdes.2016.03.044

    Google Scholar 

  31. Rodríguez-Vidal E, Sanz C, Lambarri J, Quintana I (2018) Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt Laser Technol 104:73–82. https://doi.org/10.1016/j.optlastec.2018.02.003

    Google Scholar 

  32. Yousefpour A, Hojjati M, Immarigeon JP (2004) Fusion bonding/welding of thermoplastic composites. J Thermoplast Compos Mater 17:303–341. https://doi.org/10.1177/0892705704045187

    Google Scholar 

  33. Li Y, Murr LE, McClure JC (1999) Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum. Mater Sci Eng A 271:213–223. https://doi.org/10.1016/S0921-5093(99)00204-X

    Google Scholar 

  34. P. Cavaliere, E. Cerri, Mechanical response of 2024-7075 aluminium, 0 (2005) 3669–3676.

  35. Abrahão ABRM, Reis JF, Brejão SD, Ribeiro VG, Costa ML, Botelho EC (2015) Avaliação dos parâmetros tempo, corrente e pressão na soldagem por resistência elétrica de compósitos PEI/fibras contínuas: Influência na resistência mecânica. Rev Mater 20:530–543

    Google Scholar 

  36. Lin YC, Xia YC, Jiang YQ, Li LT (2012) Precipitation in Al-Cu-Mg alloy during creep exposure. Mater Sci Eng A 556:796–800. https://doi.org/10.1016/j.msea.2012.07.069

    Google Scholar 

  37. Cavalcante FF, Da Silva WS (2017) Comportamento Mecânico da Liga de Alumínio 2024 Submetida a Diferentes Tempos de Envelhecimento. Holos 8:86. https://doi.org/10.15628/holos.2016.5182

    Google Scholar 

  38. Lin YC, Xia YC, Jiang YQ, Zhou HM, Li LT (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng A 565:420–429. https://doi.org/10.1016/j.msea.2012.12.058

    Google Scholar 

  39. Cavaliere P, Nobile R, Panella FW, Squillace A (2006) Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding. Int J Mach Tools Manuf 46:588–594. https://doi.org/10.1016/j.ijmachtools.2005.07.010

    Google Scholar 

  40. Guo Y, Ma Y, Wang F (2018) Effect of welding parameter on dynamic fracture properties of 2024-T3 aluminum friction stir welded joints. Procedia Struct Integr 13:806–812. https://doi.org/10.1016/j.prostr.2018.12.155

    Google Scholar 

  41. Kliauga AM, Vieira EA, Ferrante M (2008) The influence of impurity level and tin addition on the ageing heat treatment of the 356 class alloy. Mater Sci Eng A 480:5–16. https://doi.org/10.1016/j.msea.2007.07.091

    Google Scholar 

  42. Wang QG (2003) Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357. Metall Mater Trans A Phys Metall Mater Sci 34:2887–2899. https://doi.org/10.1007/s11661-003-0189-7

    Google Scholar 

  43. Ageorges C, Ye L (2001) Resistance welding of metal/thermoplastic composite joints. J Thermoplast Compos Mater 14:449–475. https://doi.org/10.1106/PN74-QXKH-7XBE-XKF5

    Google Scholar 

  44. Davis GD, Sun TS, Ahearn JS, Venables JD (1982) Application of surface behaviour diagrams to the study of hydration of phosphoric acid-anodized aluminium. J Mater Sci 17:1807–1818. https://doi.org/10.1007/BF00540810

    Google Scholar 

  45. Goushegir SM, dos Santos JF, Amancio-Filho ST (2014) Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des 54:196–206. https://doi.org/10.1016/j.matdes.2013.08.034

    Google Scholar 

  46. Shi H, Villegas IF, Bersee HEN (2013) Strength and failure modes in resistance welded thermoplastic composite joints: effect of fibre-matrix adhesion and fibre orientation. Compos Part A Appl Sci Manuf 55:1–10. https://doi.org/10.1016/j.compositesa.2013.08.008

    Google Scholar 

  47. Barbosa LCM, de Souza SDB, Botelho EC, Cândido GM, Rezende MC (2018) Fractographic study of welded joints of carbon fiber/PPS composites tested in lap shear. Eng Fail Anal 93:172–182. https://doi.org/10.1016/j.engfailanal.2018.07.007

    Google Scholar 

Download references

Funding

The authors are grateful to the Brazilian Funding Institutions FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (303224/2016-9) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Frank Reis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVI - Polymer Joining and Adhesive Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, J.F., Marques, L.F.B., Abrahao, A.B.M. et al. Feasibility study of the Oxy Fuel Gas Welding (OFW) process in AA2024-T3 and GF/PEI composite hybrid joint. Weld World 65, 1145–1160 (2021). https://doi.org/10.1007/s40194-021-01091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01091-6

Keywords

Navigation