Skip to main content
Log in

Conventional Cytogenetic Approaches—Useful and Indispensable Tools in Discovering Fish Biodiversity

  • Cytogenetics (T Liehr, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Fishes exhibit the greatest biodiversity among extant vertebrates. In fact, about 34,000 fish species are currently estimated, of which ~ 25% are living in Neotropical freshwaters. Currently, several leading-edge studies using molecular biology procedures have largely contributed to the investigation of the fish genomic architecture at the chromosomal level. In this review, we intend to demonstrate that conventional cytogenetics is also a powerful procedure to identify and clarify both individual and inter- or intrapopulational fish characteristics and to unveil their biodiversity.

Recent Findings

Intra- or interpopulational chromosomal characteristics, revealing dramatic processes of evolution and cryptic divergence and even speciation, as well as unusual cases of interspecific hybridization, clonal reproduction, and sex chromosome differentiation, were, and still are, unmistakably discovered among fishes by using conventional, i.e., non-molecular cytogenetic procedures.

Summary

In this review, we aim to demonstrate that conventional cytogenetics constitutes a powerful and indispensable tool in characterizing the hidden biodiversity of the ichthyofauna. We focus on some key examples that clearly illustrate the importance and the efficiency of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. •• Nelson JS, Grande TC, Wilson MVH. Fishes of the World. John Wiley & Sons; 2016. This book is a reference for fish classification, systematics, and distribution.

  2. Hoffmann AA, Rieseberg LH. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst. 2008;39:21–42.

    PubMed  PubMed Central  Google Scholar 

  3. •• Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33:427–40 This paper describes important roles of inversions in the evolution and adaptation.

    PubMed  Google Scholar 

  4. Ravi V, Venkatesh B. Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev. 2008;18:544–50.

    CAS  PubMed  Google Scholar 

  5. Ráb P, Bohlen J, Rábová M, Flajšhans M, Kalous L. Cytogenetics as a tool box in fish conservation: the present situation in Europe. In: Fish Cytogenet. Enfield NH, USA: Science Publishers; 2006.

  6. • Yano CF, LAC B, Ezaz T, Trifonov V, Sember A, Liehr T, et al. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity. 2017;118:276–83 This paper documents otherwise rarely observed monophyletic origin of ZZ/ZW sex chromosome system as well as different degree of W differentiation within a single fish genus.

    CAS  PubMed  Google Scholar 

  7. Ferguson-Smith MA. History and evolution of cytogenetics. Mol Cytogenet BioMed Central. 2015;8:19.

    Google Scholar 

  8. Puddington MM, Muzio RN. Relación entre conducta y activación de áreas cerebrales. Empleo de la técnica de AgNOR en psicología comparada. Interdisciplinaria. 2016;33:129–41.

    Google Scholar 

  9. Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM. B chromosome polymorphism in south American cichlid. Neotrop Biodivers. 2018;4:3–9.

    Google Scholar 

  10. Cioffi MB, Molina WF, Artoni RF, Bertollo LAC. Chromosomes as tools for discovering biodiversity. The case of Erythrinidae fish family BT - recent trends in cytogenetic studies. Methodologies and applications. In: Tirunilai P, editor. Rijeka: Intech; 2012.

  11. Ráb P, Slavík O. Diploid-triploid-tetraploid complex of the spined loach, genus Cobitis in Psovka Creek: the first evidence of the new species of Cobitis in the ichthyofauna of the Czech Republic. Acta Univ Carol Biol. 1996;39:201–14.

    Google Scholar 

  12. Bertollo LAC, de Bello Cioffi M, Galetti PM Jr, Moreira Filho O. Contributions to the cytogenetics of the Neotropical fish fauna. Comp Cytogenet. 2017;11:665–90.

    PubMed  PubMed Central  Google Scholar 

  13. •• Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA. Fish biodiversity and conservation in South America. J Fish Biol. 2016;89:12–47 This paper describes general aspects of fish distribution in South American region.

    CAS  PubMed  Google Scholar 

  14. Eschmeyer WN, Fricke R, van der Laan R. Catalog of fishes: genera, species, references. [Internet]. 2018 [cited 2018 Jun 15]. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

  15. Ferreira M, Kavalco KF, de Almeida-Toledo LF, Garcia C. Cryptic diversity between two Imparfinis species (Siluriformes, Heptapteridae) by cytogenetic analysis and DNA barcoding. Zebrafish. 2014;11:306–17.

    CAS  PubMed  Google Scholar 

  16. Ramirez JL, Birindelli JL, Carvalho DC, Affonso PRAM, Venere PC, Ortega H, et al. Revealing hidden diversity of the underestimated Neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front Genet. 2017;8:149.

    PubMed  PubMed Central  Google Scholar 

  17. Ferreira-Neto M, Artoni R, Artoni R, Vicari M, Moreira Filho O, Camacho J, et al. Three sympatric karyomorphs in the fish Astyanax fasciatus (Teleostei, Characidae) do not seem to hybridize in natural populations. Comp Cytogenet. 2012;6:29–40.

    PubMed  PubMed Central  Google Scholar 

  18. Ferreira M, Garcia C, Matoso DA, de Jesus IS, Cioffi MB, Bertollo LAC, et al. The Bunocephalus coracoideus species complex (Siluriformes, Aspredinidae). Signs of a speciation process through chromosomal, genetic and ecological diversity. Front Genet. 2017;8:120.

    PubMed  PubMed Central  Google Scholar 

  19. Kavalco KF, Brandão K de O, Pazza R, de Almeida-Toledo LF. Astyanax hastatus Myers, 1928 (Teleostei, Characidae): a new species complex within the genus Astyanax? Genet Mol Biol. 2009;32:477–83.

    PubMed  PubMed Central  Google Scholar 

  20. Milhomem SSR, Pieczarka JC, Crampton WGR, Silva DS, De Souza ACP, Carvalho JR, et al. Chromosomal evidence for a putative cryptic species in the Gymnotus carapo species-complex (Gymnotiformes, Gymnotidae). BMC Genet. 2008;9:75.

    PubMed  PubMed Central  Google Scholar 

  21. Nakayama C, Jégu M, Porto JIR, Feldberg E. Karyological evidence for a cryptic species of piranha within Serrasalmus rhombeus (Characidae, Serrasalminae) in the Amazon. Copeia. 2001;2001:866–9.

    Google Scholar 

  22. do Nascimento VD, Coelho KA, Nogaroto V, de Almeida RB, Ziemniczak K, Centofante L, et al. Do multiple karyomorphs and population genetics of freshwater darter characines (Apareiodon affinis) indicate chromosomal speciation? Zool Anz. 2018;272:93–103.

    Google Scholar 

  23. Nirchio M, Paim FG, Milana V, Rossi AR, Oliveira C. Identification of a new mullet species complex based on an integrative molecular and cytogenetic investigation of Mugil hospes (Mugilidae: Mugiliformes). Front Genet. 2018;9:1–9.

    Google Scholar 

  24. Oliveira IA, Argolo LA, Bitencourt J de A, Diniz D, Vicari MR, Affonso PRA de M. Cryptic chromosomal diversity in the complex “Geophagusbrasiliensis (Perciformes, Cichlidae). Zebrafish. 2016;13:33–44.

    CAS  PubMed  Google Scholar 

  25. Pazian MF, Pereira LHG, Shimabukuru-Dias CK, Oliveira C, Foresti F. Cytogenetic and molecular markers reveal the complexity of the genus Piabina Reinhardt, 1867 (Characiformes: Characidae). Neotrop Ichthyol. 2012;10:329–40.

    Google Scholar 

  26. Taylor EB. Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev Fish Biol Fish. 1999;9:299–324.

    Google Scholar 

  27. Volobouev VT, Aniskin VM, Lecompte E, Ducroz J-F. Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenet Genome Res. 2002;96:261–75.

    CAS  PubMed  Google Scholar 

  28. Oyakawa OT. Family Erythrinidae BT - check list of the freshwater fishes of South and Central America. In: Reis RE, Kullander SO, Ferraris CJ, editors. Porto Alegre: Edipucrs; 2003.

  29. de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi M de B. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet. 2015;8:56.

    PubMed  PubMed Central  Google Scholar 

  30. Morelli S, Vicari MR, Bertollo LAC. Evolutionary cytogenetics of the Hoplias lacerdae Miranda Ribeiro, 1908 group. A particular pathway concerning the other Erythrinidae fish. Braz J Biol. 2007;67:897–903.

    CAS  PubMed  Google Scholar 

  31. Bertollo LAC. Chromosome evolution in the Neotropical Erythrinidae fish family: an overview BT. In: Pizano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish Cytogenet. Enfield: Science Publishers; 2007.

    Google Scholar 

  32. •• Cioffi MDB, Yano CF, Sember A, Bertollo LAC. Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. Genes. 2017;8:258 This paper provides an update on sex chromosome evolution in fishes.

    PubMed Central  Google Scholar 

  33. Bertollo LAC, Born GG, Dergam JA, Fenocchio AS, Moreira-Filho O. A biodiversity approach in the Neotropical fish Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosom Res. 2000;8:603–13.

    CAS  Google Scholar 

  34. de Freitas NL, Al-Rikabi ABH, Bertollo LAC, Ezaz T, Yano CF, de Oliveira EA, et al. Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Curr Genomics. 2018;19:216–26.

    Google Scholar 

  35. de Oliveira EA, Sember A, Bertollo LAC, Yano CF, Ezaz T, Moreira-Filho O, et al. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma. 2018;127:115–28.

    PubMed  Google Scholar 

  36. Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs. Cytogenet Genome Res. 2009;125:132–41.

    CAS  PubMed  Google Scholar 

  37. Cioffi MB, Liehr T, Trifonov V, Molina WF, Bertollo LAC. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res. 2013;141:186–94.

    CAS  PubMed  Google Scholar 

  38. Born GG, Bertollo LAC. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome. Chromosom Res. 2000;8:111–8.

    CAS  Google Scholar 

  39. Santos U, Völcker CM, Belei FA, Cioffi MB, Bertollo LAC, Paiva SR, et al. Molecular and karyotypic phylogeography in the Neotropical Hoplias malabaricus (Erythrinidae) fish in eastern Brazil. J Fish Biol. 2009;75:2326–43.

    CAS  PubMed  Google Scholar 

  40. Sember A, Bertollo LAC, Ráb P, Yano CF, Hatanaka T, de Oliveira EA, et al. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front Genet. 2018;9:1–12.

    Google Scholar 

  41. Bertollo LAC, Fontes MS, Fenocchio AS, Cano J. The X1X2Y sex chromosome system in the fish Hoplias malabaricus. I. G-, C- and chromosome replication banding. Chromosom Res. 1997;5:493–9.

    CAS  Google Scholar 

  42. Bertollo LAC, Mestriner CA. The X1X2Y sex chromosome system in the fish Hoplias malabaricus (Pisces, Erythrinidae). II. Meiotic analyses. Chromosome Res. 1998;6:141–7.

    CAS  PubMed  Google Scholar 

  43. Cioffi MB, Bertollo LAC. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity. 2010;105:554–61.

    CAS  PubMed  Google Scholar 

  44. Lima FCT, Malabarba LR, Buckup PA, da Silva JFP, Vari RP, Harold A, et al. Genera Incertae sedis in Characidae. In: Reis RE, Kullander SO, Ferraris Jr C, editors. Check list Freshw fishes South Cent Am. Porto Alegre: Edipucrs; 2003. p. 106–69.

    Google Scholar 

  45. Fowler HW. Os peixes de água doce do Brasil. Arq Zool. Departmento de Zoologia da Secretaria da Agricultura do Estado de Sao Paulo; 1948;6:1–204.

  46. Moreira-Filho O, Bertollo LAC. Astyanax scabripinnis (Pisces; Characidae): a “species complex”. Brazil J Genet. 1991;14:331–57.

    Google Scholar 

  47. Mizoguchi SMHN, Martins-Santos IC. Cytogenetic and morphometric differences in populations of Astyanaxscabripinnis” (Pisces, Characidae) from Maringá region, PR, Brazil. Genet Mol Biol. 1998;21:55–61.

    Google Scholar 

  48. Azpelicueta MM, Almirón AE, Casciotta JR. Astyanax paris: a new species from the Río Uruguay basin of Argentina (Characiformes, Characidae). Copeia. 2002;2002:1052–6.

    Google Scholar 

  49. Azpelicueta MM, Casciotta JR, Almiron AE. Two new species of the genus Astyanax (Characiformes, Characidae) from the Paraná river basin in Argentina. Rev Suisse Zool. 2002;109:243–59.

    Google Scholar 

  50. Bertaco VA, de Lucena CAS. Two new species of Astyanax (Ostariophysi: Characiformes: Characidae) from eastern Brazil, with a synopsis of the Astyanax scabripinnis species complex. Neotrop Ichthyol. 2006;4:53–60.

    Google Scholar 

  51. Ingenito LFS, Duboc LF. A new species of Astyanax (Ostariophysi: Characiformes: Characidae) from the upper rio Iguaçu basin, southern Brazil. Neotrop Ichthyol. 2014;12:281–90.

    Google Scholar 

  52. Malacrida ACCP, Dias AL, Giuliano-Caetano L. Natural triploidy in Astyanax aff. scabripinnis (Pisces, Characidae) of the Tibagi river bay-PR. Cytologia. 2003;68:267–70.

    Google Scholar 

  53. Moreira-Filho O, Fenocchio AS, Pastori MC, Bertollo LAC. Occurrence of a metacentric macrochromosome B in different species of the genus Astyanax (Pisces, Characidae, Tetragonopterinae). Cytologia. 2001;66:59–64.

    Google Scholar 

  54. Machado SN, Neto MF, Bakkali M, Vicari MR, Artoni RF, de Oliveira C, et al. Natural triploidy and B chromosomes in Astyanax scabripinnis (Characiformes, Characidae): a new occurrence. Caryologia. 2012;65:40–6.

    Google Scholar 

  55. Salvador LB, Moreira-Filho O. B chromosomes in Astyanax scabripinnis (Pisces, Characidae). Heredity. 1992;69:50–6.

    Google Scholar 

  56. Maistro EL, Foresti F, Oliveira C, de Almeida Toledo LF. Occurrence of macro B chromosomes in Astyanax scabripinnis paranae (Pisces, Characiformes, Characidae). Genetica. 1992;87:101–6.

    Google Scholar 

  57. Rocon-Stange EA, Almeida-Toledo LF. Supernumerary B chromosomes restricted to males in Asyanax scabripinnis (Pisces, Characidae). Brazil J Genet. 1993;16:601–15.

    Google Scholar 

  58. Vicente VE, Moreira-Filho O, Camacho JPM. Sex-ratio distortion associated with the presence of a B chromosome in Astyanax scabripinnis (Teleostei, Characidae). Cytogenet Genome Res. 1996;74:70–5.

    CAS  Google Scholar 

  59. Néo DM, Moreira-Filho O, Camacho JPM. Altitudinal variation for B chromosome frequency in the characid fish Astyanax scabripinnis. Heredity. 2000;85:136–41.

    PubMed  Google Scholar 

  60. Sá M d FP d, Fragoso-Moura EN, Fenerich-Verani N, Ferro DA de M. Occurrence of intersexuality in “Lambaris”, Astyanax scabripinnis (Jenyns, 1842), small characids from the Brazilian streams. Brazilian Arch Biol Technol. 2008;51:315–22.

    Google Scholar 

  61. Cornelio D, Castro JP, Santos MH, Vicari MR, de Almeida MC, Moreira-Filho O, et al. Hermaphroditism can compensate for the sex ratio in the Astyanax scabripinnis species complex (Teleostei: Characidae): expanding the B chromosome study model. Rev Fish Biol Fish. 2017;27:681–9.

    Google Scholar 

  62. Holbrook SJ, Schmitt RJ, Messmer V, Brooks AJ, Srinivasan M, Munday PL, et al. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species. PLoS One. 2015;10:e0124054.

    PubMed  PubMed Central  Google Scholar 

  63. Victor BC. How many coral reef fish species are there? Cryptic diversity and the new molecular taxonomy. In: Mora C, editor. Ecol fishes coral reefs. Cambridge: Cambridge University Press; 2015. p. 76–87.

    Google Scholar 

  64. Eschmeyer WN, Fricke R, Fong JD, Polack DA. Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa. 2010;2525:19–50.

    Google Scholar 

  65. Molina WF. Chromosomal changes and stasis in marine fish groups. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor B, editors. Fish Cytogenet. 1st ed. Enfield: Science Publishers; 2007. p. 69–110.

    Google Scholar 

  66. Benton MJ. Biodiversity on land and in the sea. Geol J. 2001;36:211–30.

    Google Scholar 

  67. Vermeij GJ, Grosberg RK. The great divergence: when did diversity on land exceed that in the sea? Integr Comp Biol. 2010;50:675–82.

    PubMed  Google Scholar 

  68. Neto CCM, Cioffi MB, Bertollo LAC, Molina WF. Extensive chromosomal homologies and evidence of karyotypic stasis in Atlantic grunts of the genus Haemulon (Perciformes). J Exp Mar Bio Ecol. 2011;401:75–9.

    Google Scholar 

  69. Calado LL, Bertollo LAC, Cioffi MB, Costa GWWF, Jacobina UP, Molina WF. Evolutionary dynamics of rDNA genes on chromosomes of the Eucinostomus fishes: cytotaxonomic and karyoevolutive implications. Genet Mol Res. 2014;13:9951–9.

    CAS  PubMed  Google Scholar 

  70. Brum MJI. Correlações entre a filogenia ea citogenética dos peixes Teleósteos. Rev Bras Genet Monogr. 1995;2:5–42.

    Google Scholar 

  71. Da CGWWF, Cioffi MDB, Bertollo LAC, Molina WF. The evolutionary dynamics of ribosomal genes, histone H3, and transposable Rex elements in the genome of Atlantic snappers. J Hered. 2016;107:173–80.

    Google Scholar 

  72. de Sena DCS, Molina WF. Chromosomal rearrangements associated with pelagic larval duration in Labridae (Perciformes). J Exp Mar Bio Ecol. 2007;353:203–10.

    Google Scholar 

  73. Soares RX, Cioffi MB, Bertollo LAC, Borges AT, Costa GWWF, Molina WF. Chromosomal evolution in large pelagic oceanic apex predators, the barracudas (Sphyraenidae, Percomorpha). Genet Mol Res. 2017;16.

  74. Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes. An Acad Bras Cienc. 2014;86:1801–12.

    PubMed  Google Scholar 

  75. Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res. 2013;141:90–102.

    CAS  PubMed  Google Scholar 

  76. Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2017;1–10.

  77. Molina WF, Maia-Lima FA, Affonso PRAM. Divergence between karyotypical pattern and speciation events in Serranidae fish (Perciformes). Caryologia. 2002;55:299–305.

    Google Scholar 

  78. Accioly I, Bertollo L, Costa G, Jacobina U, Molina W. Chromosomal population structuring in carangids (Perciformes) between the north-eastern and south-eastern coasts of Brazil. Afr J Mar Sci. 2012;34:383–9.

    Google Scholar 

  79. Amorim KDJ, Cioffi MB, Bertollo LAC, Soares RX, Calado LL, Borges AT, et al. Interregional cytogenetic comparisons in Halichoeres and Thalassoma wrasses (Labridae) of coastal and insular regions of the southwestern Atlantic. Genet Mol Res. 2017;16.

  80. Galetti PM Jr, Molina WF, Affonso PRAM, Aguilar CT. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica. 2006;126:161–77.

    PubMed  Google Scholar 

  81. Ojima Y, Kashiwagi E. Chromosomal evolution associated with Robertsonian fusion in the genus Dascyllus. Proc Jpn Acad Ser B. 1981;57:368–70.

    Google Scholar 

  82. Molina WF, Galetti-Jr PM. Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5s rRNA genes. Genet Mol Biol. 2002;25:373–7.

    CAS  Google Scholar 

  83. Getlekha N, Molina WF, de Bello Cioffi M, Yano CF, Maneechot N, Bertollo LAC, et al. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes). Genetica. 2016;144:203–11.

    PubMed  Google Scholar 

  84. Kashiwagi E, Takai A, Ojima Y. Chromosomal distribution of constitutive heterochromatin and nucleolus organizer regions in four Dascyllus fishes (Pomacentridae, Perciformes). Cytologia. 2005;70:345–9.

    Google Scholar 

  85. Vitturi R, Carbone P, Catalano E, Macaluso M. Chromosome polymorphism in Gobius paganellus, Linneo 1758 (Pisces, Gobiidae). Biol Bull. 1984;167:658–68.

    CAS  PubMed  Google Scholar 

  86. Vasil’eva ED, Vasil’ev VP. Morphological variability, chromosome polymorphism, and problems of identifying individual species of gobies of the group Ponticola (Gobiidae) and assessing taxonomic relations of local populations. J Ichthyol. 2016;56:644–55.

    Google Scholar 

  87. Thode G, Giles V, Alvarez MC. Multiple chromosome polymorphism in Gobius paganellus (Teleostei, Perciformes). Heredity. 1985;54:3–7.

    Google Scholar 

  88. de Lima-Filho PA, de Bello Cioffi M, Bertollo LAC, Molina WF. Chromosomal and morphological divergences in Atlantic populations of the frillfin goby Bathygobius soporator (Gobiidae, Perciformes). J Exp Mar Biol Ecol. 2012;434:63–70.

    Google Scholar 

  89. Lima-Filho PA, Rosa R de S, Souza A d S d, da Costa GWWF, de Oliveira C, Molina WF. Evolutionary diversification of Western Atlantic Bathygobius species based on cytogenetic, morphologic and DNA barcode data. Rev Fish Biol Fish. 2016;26:109–21.

    Google Scholar 

  90. Rodríguez-Rey GT, Carvalho Filho A, De Araújo ME, Solé-Cava AM. Evolutionary history of Bathygobius (Perciformes: Gobiidae) in the Atlantic biogeographic provinces: a new endemic species and old mitochondrial lineages. Zool J Linnean Soc. 2018;182:360–84.

    Google Scholar 

  91. Williams SL, Davidson IC, Pasari JR, Ashton GV, Carlton JT, Crafton RE, et al. Managing multiple vectors for marine invasions in an increasingly connected world. Bioscience. 2013;63:952–66.

    Google Scholar 

  92. Maruska KP, Peyton KA. Interspecific spawning between a recent immigrant and an endemic damselfish (Pisces: Pomacentridae) in the Hawaiian Islands. Pac Sci. 2007;61:211–21.

    Google Scholar 

  93. Molina WF, da Costa GWWF, Soares RX, de Mello Affonso PRA, de Bello Cioffi M, de Araújo WC, et al. Extensive chromosome conservatism in Atlantic butterflyfishes, genus Chaetodon Linnaeus, 1758: implications for the high hybridization success. Zool Anz. 2013;253:137–42.

    Google Scholar 

  94. Nirchio M, Ehemann N, Siccha-Ramirez R, Ron E, Pérez JE, Rossi AR, et al. Karyotype of the invasive species Pterois volitans (Scorpaeniformes: Scorpaenidae) from Margarita Island, Venezuela. Rev Biol Trop. 2014;62:1365–73.

    PubMed  Google Scholar 

  95. Getlekha N, Cioffi M de B, Yano CF, Maneechot N, Bertollo LAC, Supiwong W, et al. Chromosome mapping of repetitive DNAs in sergeant major fishes (Abudefdufinae, Pomacentridae): a general view on the chromosomal conservatism of the genus. Genetica. 2016;144:567–76.

    CAS  PubMed  Google Scholar 

  96. Nalbant TT, Ráb P, Bohlen J, Saitoh K. Evolutionary success of the loaches of the genus Cobitis (Pisces: Ostariophysi: Cobitidae). Trav Mus Natl Hist Nat Grigore Antipa. 2001;43:277–89.

  97. Kottelat M, Freyhof J. Handbook of European freshwater fishes. Publications Kottelat; 2007.

  98. Berg LS. Freshwater fishes of the USSR and neighbouring countries. 1949.

  99. Perdices A, Bohlen J, Šlechtová V, Doadrio I. Molecular evidence for multiple origins of the European spined loaches (Teleostei, Cobitidae). PLoS One. 2016;11:e0144628.

    PubMed  PubMed Central  Google Scholar 

  100. Arai R. Fish karyotypes: a check list. Springer Science & Business Media; 2011.

  101. Janko K, Bohlen J, Lamatsch D, Flajšhans M, Kotlík P, Ráb P, et al. Evidence for gynogenesis as the reproductive mode of hybrid loaches (Cobitis: Teleostei): on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131:185–94.

    PubMed  Google Scholar 

  102. Rábová M, Ráb P, Ozouf-Costaz C. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in a loach fish, Cobitis vardarensis (Ostariophysi, Cobitidae) detected by different banding techniques and fluorescence in situ hybridization (FISH). Genetica. 2001;111:413–22.

    PubMed  Google Scholar 

  103. Boroń A. Banded karyotype of spined loach Cobitis taenia and triploid Cobitis from Poland. Genetica. 1999;105:293–300.

    PubMed  Google Scholar 

  104. Boroń A. Replication banding patterns in the spined loach, Cobitis taenia L. (Pisces, Cobitidae). Genetica. 2003;119:51–5.

    PubMed  Google Scholar 

  105. Ráb P, Rábová M, Bohlen J, Lusk S. Genetic differentiation of the two hybrid diploid-polyploid complexes of loaches, genus Cobitis (Cobitidae) involving C. taenia, C. elongatoides and C. spp. in the Czech Republic: karyotypes and cytogenetic diversity. Folia Zool. 2000;49:55–66.

    Google Scholar 

  106. Janko K, Culling MA, Rab P, Kotlik P. Ice age cloning–comparison of the quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol Ecol. 2005;14:2991–3004.

    CAS  PubMed  Google Scholar 

  107. Janko K, Kotlik P, Ráb P. Evolutionary history of asexual hybrid loaches (Cobitis: Teleostei) inferred from phylogenetic analysis of mitochondrial DNA variation. J Evol Biol. 2003;16:1280–7.

    CAS  PubMed  Google Scholar 

  108. Vasil’ev VP, Vasil’eva ED. A new diploid-polyploid complex in fishes. Dokl Akad Nauk SSSR. 1982;266:250–2.

    Google Scholar 

  109. Boron A. Karyotype study of diploid and triploid Cobitis taenia (Pisces, Cobitididae) from Vistula river basin. Cytobios. 1992;72:201–6.

    Google Scholar 

  110. Janko K, Bohlen J, Lamatsch D, Flajšhans M, Epplen JT, Ráb P, et al. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131:185–94.

    PubMed  Google Scholar 

  111. Choleva L, Apostolou A, Rab P, Janko K. Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Philos Trans R Soc B Biol Sci. 2008;363:2911–9.

    Google Scholar 

  112. Volff JN. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94:280–94.

    CAS  PubMed  Google Scholar 

  113. Froschauer A, Braasch I, Volff J. Fish genomes, comparative genomics and vertebrate evolution. Curr Genomics. 2006;7:43–57.

    CAS  Google Scholar 

  114. Amores A, Giles V, Thode G, Alvarez MC. A tandem fusion in the fish Gobius paganellus (Gobiidae, Perciformes), a karyotypically polymorphic species. Genome. 1990;33:57–9.

    Google Scholar 

  115. Symonová R, Flajšhans M, Sember A, Havelka M, Gela D, Kořínková T, et al. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: an evolutionary story narrated by repetitive sequences. Cytogenet Genome Res. 2013;141:153–62.

    PubMed  Google Scholar 

  116. Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5.

    PubMed  PubMed Central  Google Scholar 

  117. • Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol. 2016;48:12 This paper describes the second highest chromosomal number among vertebrates.

    PubMed  PubMed Central  Google Scholar 

  118. Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula). BMC Genet. 2017;18:19.

    PubMed  PubMed Central  Google Scholar 

  119. Flajšhans M, Ráb P, Linhart O. Polyploidie a genomové manipulace u ryb. Genetika šlechtění ryb – Kn. VURH JU Vodňany; 2008. p. 153–195.

  120. Crow KD, Smith CD, Cheng J-F, Wagner GP, Amemiya CT. An independent genome duplication inferred from Hox paralogs in the American paddlefish–a representative basal ray-finned fish and important comparative reference. Genome Biol Evol. 2012;4:937–53.

    PubMed  PubMed Central  Google Scholar 

  121. Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364.

    CAS  Google Scholar 

  122. Colihueque N, Iturra P, Estay F, Dı́az NF. Diploid chromosome number variations and sex chromosome polymorphism in five cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2001;198:63–77.

    Google Scholar 

  123. Schartl M, Schmid M, Nanda I. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs. Chromosoma. 2016;125:553–71.

    PubMed  Google Scholar 

  124. Takehana Y, Demiyah D, Naruse K, Hamaguchi S, Sakaizumi M. Evolution of different Y chromosomes in two medaka species, Oryzias dancena and O. latipes. Genetics. 2007;175:1335–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cioffi MB, Moreira-Filho O, Almeida-Toledo LF, Bertollo LAC. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J Fish Biol. 2012;80:2125–39.

    CAS  PubMed  Google Scholar 

  126. Uyeno T, Miller RR. Multiple sex chromosomes in a Mexican cyprinodontid fish. Nature. 1971;231:452–3.

    CAS  PubMed  Google Scholar 

  127. Kitano J, Peichel CL. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fish. 2012;94:549–58.

    Google Scholar 

  128. Bracewell RR, Bentz BJ, Sullivan BT, Good JM. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nat Commun. 2017;8:1593.

    PubMed  PubMed Central  Google Scholar 

  129. Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013;110:6931–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kottler VA, Schartl M. The colorful sex chromosomes of teleost fish. Genes. 2018;9:233.

    PubMed Central  Google Scholar 

  131. Haaf T, Schmid M. An early stage of ZW/ZZ sex chromosome differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes). Chromosoma. 1984;89:37–41.

    Google Scholar 

  132. Koubová M, Pokorná MJ, Rovatsos M, Farkačová K, Altmanová M, Kratochvíl L. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable? Chromosom Res. 2014;22:441–52.

    Google Scholar 

  133. Liehr T. Classical cytogenetics “is not equal to” banding cytogenetics. Mol Cytogenet. 2017 Feb 16;10:3.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq (Proc. Nos. 401962/2016-4 and 304992/2015-1), Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP (Proc. Nos. 2016/21411-7 and 2016/22196-2), and CAPES/Alexander von Humboldt (Proc. No. 88881.136128/2017-01). PR and AS were supported by the project EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE and RVO: 67985904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Bello Cioffi.

Ethics declarations

Conflict of Interest

The authors reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

This article is part of the Topical Collection on Cytogenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bello Cioffi, M., Moreira-Filho, O., Ráb, P. et al. Conventional Cytogenetic Approaches—Useful and Indispensable Tools in Discovering Fish Biodiversity. Curr Genet Med Rep 6, 176–186 (2018). https://doi.org/10.1007/s40142-018-0148-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-018-0148-7

Keywords

Navigation