Skip to main content

Advertisement

Log in

Genetic Modifiers in Neurodegeneration

  • Neurogenetics and Psychiatric Genetics (C Cruchaga, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the evidence for genetic modifier effects in the neurodegenerative diseases: Huntington’s disease (HD), frontotemporal lobar degeneration (FTLD), Alzheimer’s disease (AD), and Parkinson’s disease (PD).

Recent Findings

Increasingly, we understand human disease genetics less through the lens of single-locus/single-trait effects, and more through that of polygenic contributions to disease risk. In addition, specific examples of genetic modifier effects of the chromosome 7 gene TMEM106B on various target genes including those causal for Mendelian classes of FTLD—GRN and c9orf72—have emerged from both genetic cohort studies and mechanistic examinations of biological pathways.

Summary

Here, we summarize the literature reporting genetic modifier effects in HD, FTLD, AD, and PD. We further contextualize reported genetic modifier effects in these diseases in terms of insight they may lend to the concept of a polygenic landscape for the major neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4.

    Article  Google Scholar 

  2. Bertram L. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449–57. https://doi.org/10.1172/JCI24761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Gallagher MD, Posavi M, Huang P, Unger TL, Berlyand Y, Gruenewald AL, et al. A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression. Am J Hum Genet. 2017;101(5):643–63. https://doi.org/10.1016/j.ajhg.2017.09.004. TMEM106B genetic modifier effect in FTLD due to c9orf72 expansion, demonstrated in 31-site international FTLD cohort.

    Article  CAS  PubMed  Google Scholar 

  4. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(D1):D1001–6. https://doi.org/10.1093/nar/gkt1229.

    Article  CAS  PubMed  Google Scholar 

  5. Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. Nat Rev Genet. 2010;10(12):872. https://doi.org/10.1038/nrg2670.

    Article  CAS  Google Scholar 

  6. Riordan JD, Nadeau JH. From peas to disease: modifier genes, network resilience, and the genetics of health. Am J Hum Genet. 2017;101(2):177–91. https://doi.org/10.1016/j.ajhg.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sackton TB, Hartl DL. Genotypic context and epistasis in individuals and populations. Cell. 2016;166(2):279–87. https://doi.org/10.1016/j.cell.2016.06.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva RF, Mendonça SCM, Carvalho LM, Reis AM, Gordo I, Trindade S, et al. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations. PLoS Genet. 2011;7(7):e1002181. https://doi.org/10.1371/journal.pgen.1002181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schenk MF, Szendro IG, Salverda MLM, Krug J, de Visser JAGM. Patterns of epistasis between beneficial mutations in an antibiotic resistance gene. Mol Biol Evol. 2013;30(8):1779–87. https://doi.org/10.1093/molbev/mst096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cutting GR. Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci. 2010;1214(1):57–69. https://doi.org/10.1111/j.1749-6632.2010.05879.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10(4):204–16. https://doi.org/10.1038/nrneurol.2014.24.

    Article  CAS  PubMed  Google Scholar 

  12. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83. https://doi.org/10.1016/0092-8674(93)90585-E.

    Article  Google Scholar 

  13. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, et al. A worldwide study of the Huntington’s disease mutation: the sensitivity and specificity of measuring CAG repeats. N Engl J Med. 1994;330(20):1401–6. https://doi.org/10.1056/NEJM199405193302001.

    Article  CAS  PubMed  Google Scholar 

  14. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet. 1993;4(4):393–7. https://doi.org/10.1038/ng0893-393.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J-M, Ramos EM, Lee J-H, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690–5. https://doi.org/10.1212/WNL.0b013e318249f683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee J-M, Wheeler VC, Chao MJ, Vonsattel JPG, Pinto RM, Lucente D, et al. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell. 2015;162(3):516–26. https://doi.org/10.1016/j.cell.2015.07.003.

    Article  CAS  Google Scholar 

  17. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–82. https://doi.org/10.1016/S0140-6736(15)00461-4.

    Article  PubMed  Google Scholar 

  18. Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, van Swieten JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2011;82(5):476–86. https://doi.org/10.1136/jnnp.2010.212225.

    Article  PubMed  Google Scholar 

  19. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5. https://doi.org/10.1038/31508.

    Article  CAS  PubMed  Google Scholar 

  20. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9. https://doi.org/10.1038/nature05016.

    Article  CAS  PubMed  Google Scholar 

  21. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4. https://doi.org/10.1038/nature05017.

    Article  CAS  PubMed  Google Scholar 

  22. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. https://doi.org/10.1016/j.neuron.2011.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. https://doi.org/10.1016/j.neuron.2011.09.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baborie A, Griffiths TD, Jaros E, McKeith IG, Burn DJ, Richardson A, et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathol. 2011;121(3):365–71. https://doi.org/10.1007/s00401-010-0765-z.

    Article  PubMed  Google Scholar 

  25. Mackenzie IRA, Baborie A, Pickering-Brown S, Du Plessis D, Jaros E, Perry RH, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006;112(5):539–49. https://doi.org/10.1007/s00401-006-0138-9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006;169(4):1343–52. https://doi.org/10.2353/ajpath.2006.060438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, Richardson AMT, et al. Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain. 2008;131(3):721–31. https://doi.org/10.1093/brain/awm331.

    Article  PubMed  Google Scholar 

  28. Benussi A, Padovani A, Borroni B. Phenotypic heterogeneity of monogenic frontotemporal dementia. Front Aging Neurosci. 2015;7:1–19. https://doi.org/10.3389/fnagi.2015.00171.

    Article  Google Scholar 

  29. Van Deerlin VM, Sleiman PMA, Martinez-Lage M, Chen-Plotkin A, Wang L-S, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9. https://doi.org/10.1038/ng.536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, DeJesus-Hernandez M, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76(5):467–74. https://doi.org/10.1212/WNL.0b013e31820a0e3b.

    Article  CAS  PubMed  Google Scholar 

  31. van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R, et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain. 2011;134(3):808–15. https://doi.org/10.1093/brain/awr007.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138:32–53. https://doi.org/10.1111/jnc.13622.

    Article  CAS  PubMed  Google Scholar 

  33. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15(20):2988–3001. https://doi.org/10.1093/hmg/ddl241.

    Article  CAS  PubMed  Google Scholar 

  34. Chen-Plotkin AS, Martinez-Lage M, Sleiman PM a, Hu W, Greene R, Wood EM, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–97. https://doi.org/10.1001/archneurol.2011.53.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kelley BJ, Haidar W, Boeve BF, Baker M, Graff-Radford NR, Krefft T, et al. Prominent phenotypic variability associated with mutations in progranulin. Neurobiol Aging. 2009;30(5):739–51. https://doi.org/10.1016/j.neurobiolaging.2007.08.022.

    Article  CAS  PubMed  Google Scholar 

  36. Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, Van Swieten J, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol. 2008;181(1):37–41. https://doi.org/10.1083/jcb.200712039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. He Z, Ong CHP, Halper J, Bateman A. Progranulin is a mediator of the wound response. Nat Med. 2003;9(2):225–9. https://doi.org/10.1038/nm816.

    Article  CAS  PubMed  Google Scholar 

  38. Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68(4):654–67. https://doi.org/10.1016/j.neuron.2010.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Muynck L, Herdewyn S, Beel S, Scheveneels W, Van Den Bosch L, Robberecht W, et al. The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiol Aging. 2013;34(11):2541–7. https://doi.org/10.1016/j.neurobiolaging.2013.04.022.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou X, Sun L, de Oliveira FB, Qi X, Brown WJ, Smolka MB, et al. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol. 2015;210(6):991–1002. https://doi.org/10.1083/jcb.201502029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K, et al. Progranulin regulates neuronal outgrowth independent of Sortilin. Mol Neurodegener. 2012;7(1):33. https://doi.org/10.1186/1750-1326-7-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ, et al. Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet. 2010;87(6):890–7. https://doi.org/10.1016/j.ajhg.2010.11.002. Genome-wide analysis identifying SNP near SORT1 (coding for sortilin-1, reported to be the neuronal receptor for progranulin) as a predictor of plasma progranulin levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Cruchaga C, Graff C, Chiang H, Wang J, Hinrichs AL, Spiegel N, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol. 2011;68(5):581–6. https://doi.org/10.1001/archneurol.2010.350. TMEM106B genetic modifier effect in FTLD due to GRN mutations, demonstrated in four large families.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L, et al. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci. 2012;32(33):11213–27. https://doi.org/10.1523/JNEUROSCI.0521-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lang CM, Fellerer K, Schwenk BM, Kuhn PH, Kremmer E, Edbauer D, et al. Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem. 2012;287(23):19355–65. https://doi.org/10.1074/jbc.M112.365098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brady OA, Zheng Y, Murphy K, Huang M, Hu F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 2013;22(4):685–95. https://doi.org/10.1093/hmg/dds475.

    Article  CAS  PubMed  Google Scholar 

  47. • Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TKT, et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 2017;95(2):281–296.e6. https://doi.org/10.1016/j.neuron.2017.06.026. Provides in vivo evidence of a specific interaction between TMEM106B and GRN , as lysosomal defects in GRN -deficient mice are rescued by deletion of TMEM106B.

    Article  CAS  PubMed  Google Scholar 

  48. • Busch JI, Unger TL, Jain N, Skrinak RT, Charan RA, Chen-Plotkin AS. Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Hum Mol Genet. 2016;25:2681–97. https://doi.org/10.1093/hmg/ddw127. Provides mechanistic evidence of a specific interaction between TMEM106B and c9orf72 , as aberrant lysosomal phenotypes induced by TMEM106B over-expression are rescued by knockdown of c9orf72

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC, al-Sarraj S, Neumann M, Gelpi E, Ghetti B, Rohrer JD, Halliday G, van Broeckhoven C, Seilhean D, Shaw PJ, Frosch MP, Alafuzoff I, Antonell A, Bogdanovic N, Brooks W, Cairns NJ, Cooper-Knock J, Cotman C, Cras P, Cruts M, de Deyn PP, DeCarli C, Dobson-Stone C, Engelborghs S, Fox N, Galasko D, Gearing M, Gijselinck I, Grafman J, Hartikainen P, Hatanpaa KJ, Highley JR, Hodges J, Hulette C, Ince PG, Jin LW, Kirby J, Kofler J, Kril J, Kwok JBJ, Levey A, Lieberman A, Llado A, Martin JJ, Masliah E, McDermott CJ, McKee A, McLean C, Mead S, Miller CA, Miller J, Munoz DG, Murrell J, Paulson H, Piguet O, Rossor M, Sanchez-Valle R, Sano M, Schneider J, Silbert LC, Spina S, van der Zee J, van Langenhove T, Warren J, Wharton SB, White III CL, Woltjer RL, Trojanowski JQ, Lee VMY, van Deerlin V, Chen-Plotkin AS. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 2014;127:407–418. doi:https://doi.org/10.1007/s00401-013-1239-x, 3.

  50. Murphy NA, Arthur KC, Tienari PJ, Houlden H, Chiò A, Traynor BJ. Age-related penetrance of the C9orf72 repeat expansion. Sci Rep. 2017;7(1):2116. https://doi.org/10.1038/s41598-017-02364-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D, et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol. 2011;121(3):373–80. https://doi.org/10.1007/s00401-010-0782-y.

    Article  PubMed  Google Scholar 

  52. Katsumata Y, Nelson PT, Ellingson SR, Fardo DW, et al. Neurobiol Aging. 2017;53:193.e17–25. https://doi.org/10.1016/j.neurobiolaging.2017.01.003.

    Article  CAS  Google Scholar 

  53. White CC, Yang HS, Yu L, Chibnik LB, Dawe RJ, Yang J, et al. Identification of genes associated with dissociation of cognitive performance and neuropathological burden: multistep analysis of genetic, epigenetic, and transcriptional data. PLoS Med. 2017;14(4):1–23. https://doi.org/10.1371/journal.pmed.1002287.

    Article  Google Scholar 

  54. Rhinn H, Abeliovich A. Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst. 2017;4(4):404–15.e5. https://doi.org/10.1016/j.cels.2017.02.009.

    Article  CAS  PubMed  Google Scholar 

  55. Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci. 2014;61:226–40. https://doi.org/10.1016/j.mcn.2014.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwenk JM, Lindberg J, Sundberg M, Uhlén M, Nilsson P. Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol Cell Proteomics. 2007;6(1):125–32. https://doi.org/10.1074/mcp.T600035-MCP200.

    Article  CAS  PubMed  Google Scholar 

  57. Yu L, De Jager PL, Yang J, Trojanowski JQ, Bennett DA, Schneider JA. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology. 2015;84(9):927–34. https://doi.org/10.1212/WNL.0000000000001313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Evans DA. Prevalence of Alzheimer’s disease in a community population of older persons. JAMA. 1989;262(18):2551–6. https://doi.org/10.1001/jama.1989.03430180093036.

    Article  CAS  PubMed  Google Scholar 

  59. Wisniewski T, Golabek A, Matsubara E, Ghiso J, Frangione B. Apolipoprotein E: binding to soluble Alzheimer’s beta-amyloid. Biochem Biophys Res Commun. 1993;192(2):359–65. https://doi.org/10.1006/bbrc.1993.1423.

    Article  CAS  PubMed  Google Scholar 

  60. Price DL, Tanzi RE, Borchelt DR, Sisodia SS. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet. 1998;32(1):461–93. https://doi.org/10.1146/annurev.genet.32.1.461.

    Article  CAS  PubMed  Google Scholar 

  61. Dickson DW. Neuropathology of Alzheimer’s disease and other dementias. Clin Geriatr Med. 2001;17(2):209–28. https://doi.org/10.1016/S0749-0690(05)70066-5.

    Article  CAS  PubMed  Google Scholar 

  62. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60. https://doi.org/10.1038/375754a0.

    Article  CAS  PubMed  Google Scholar 

  63. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6. https://doi.org/10.1038/349704a0.

    Article  CAS  PubMed  Google Scholar 

  64. Larner AJ, Doran M. Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J Neurol. 2006;253(2):139–58. https://doi.org/10.1007/s00415-005-0019-5.

    Article  CAS  PubMed  Google Scholar 

  65. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8. https://doi.org/10.1038/376775a0.

    Article  CAS  PubMed  Google Scholar 

  66. Levy-Lahad E, Wasco W, Poorkaj P, Romano D, Oshima J, Pettingell W, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science (80- ). 1995;269(5226):973–7. https://doi.org/10.1126/science.7638622.

    Article  CAS  Google Scholar 

  67. Acosta-Baena N, Sepulveda-Falla D, Lopera-Gómez CM, Jaramillo-Elorza MC, Moreno S, Aguirre-Acevedo DC, et al. Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer’s disease: a retrospective cohort study. Lancet Neurol. 2011;10(3):213–20. https://doi.org/10.1016/S1474-4422(10)70323-9.

    Article  CAS  PubMed  Google Scholar 

  68. Barber RC. The genetics of Alzheimer’s disease. Scientifica (Cairo). 2012;2012:1–14. https://doi.org/10.6064/2012/246210.

    Article  CAS  Google Scholar 

  69. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. https://doi.org/10.1038/nrneurol.2012.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23. https://doi.org/10.1038/ng1934.

    Article  CAS  PubMed  Google Scholar 

  71. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci. 1993;90(5):1977–81. https://doi.org/10.1073/pnas.90.5.1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poirier J, Bertrand P, Poirier J, Kogan S, Gauthier S, Poirier J, et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet. 1993;342(8873):697–9. https://doi.org/10.1016/0140-6736(93)91705-Q.

    Article  CAS  PubMed  Google Scholar 

  73. Farrer LA. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. JAMA. 1997;278(16):1349–56. https://doi.org/10.1001/jama.1997.03550160069041.

    Article  CAS  PubMed  Google Scholar 

  74. Pastor P, Roe CM, Villegas A, Bedoya G, Chakraverty S, García G, et al. Apolipoprotein Eε4 modifies Alzheimer’s disease onset in an E280A PS1 kindred. Ann Neurol. 2003;54(2):163–9. https://doi.org/10.1002/ana.10636.

    Article  CAS  PubMed  Google Scholar 

  75. Wijsman EM, Daw EW, Yu X, Steinbart EJ, Nochlin D, Bird TD, et al. APOE and other loci affect age-at-onset in Alzheimer’s disease families with PS2 mutation. Am J Med Genet Part B Neuropsychiatr Genet. 2005;132B(1):14–20. https://doi.org/10.1002/ajmg.b.30087.

    Article  Google Scholar 

  76. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994;7(2):180–4. https://doi.org/10.1038/ng0694-180.

    Article  CAS  PubMed  Google Scholar 

  77. William Rebeck G, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron. 1993;11(4):575–80. https://doi.org/10.1016/0896-6273(93)90070-8.

    Article  Google Scholar 

  78. Huang K, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20(8):1052–61. https://doi.org/10.1038/nn.4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE isoforms differentially regulate brain amyloid-peptide clearance. Sci Transl Med. 2011;3(89):89ra57. https://doi.org/10.1126/scitranslmed.3002156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K, et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017;133(5):839–56. https://doi.org/10.1007/s00401-017-1685-y.

    Article  CAS  PubMed  Google Scholar 

  81. Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Shaw LM, Trojanowski JQ, et al. Effect of APOE on biomarkers of amyloid load and neuronal pathology in AD. Ann Neurol 2009;67. doi:https://doi.org/10.1002/ana.21953.

  82. Lim YY, Mormino EC, Initiative ADN. APOE genotype and early beta-amyloid accumulation in older adults without dementia. Neurology. 2017;89(10):1028–34. https://doi.org/10.1212/WNL.0000000000004336.

    Article  CAS  PubMed  Google Scholar 

  83. Montine TJ, Shi M, Quinn JF, Peskind ER, Craft S, Ginghina C, et al. CSF Aβ 42 and tau in Parkinson’s disease with cognitive impairment. Mov Disord. 2010;25(15):2682–5. https://doi.org/10.1002/mds.23287.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Petrou M, Bohnen NI, Muller MLTM, Koeppe R a, Albin RL, Frey K a Aβ-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 2012;79:1161–1167. doi:https://doi.org/10.1212/WNL.0b013e3182698d4a, 11.

  85. Irwin DJ, Lee VM, Trojanowski JQ. Amyloid beta-peptide and the dementia of Parkinson’s disease. Nat Rev Neurosci. 2013;14(9):626–36. https://doi.org/10.1038/nrn3549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Irwin DJ, White MT, Toledo JB, Xie SX, Robinson JL, Van Deerlin V, et al. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol. 2012;72(4):587–98. https://doi.org/10.1002/ana.23659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Siderowf A, Xie SX, Hurtig H, Weintraub D, Duda J, Chen-Plotkin A, et al. CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75(12):1055–61. https://doi.org/10.1212/WNL.0b013e3181f39a78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tsuang D, Leverenz JB, Lopez OL, Hamilton RL, Bennett DA, Schneider JA, et al. APOE ϵ4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013;70(2):223–8. https://doi.org/10.1001/jamaneurol.2013.600.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tropea TF, Chen-Plotkin AS. Unlocking the mystery of biomarkers: a brief introduction, challenges and opportunities in Parkinson disease. Parkinsonism Relat Disord. 2017;46:S15–8. https://doi.org/10.1016/j.parkreldis.2017.07.021.

    Article  PubMed  Google Scholar 

  90. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35. https://doi.org/10.1016/S1474-4422(06)70471-9.

    Article  PubMed  Google Scholar 

  91. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science (80- ). 1997;276(5321):2045–7. https://doi.org/10.1126/science.276.5321.2045.

    Article  CAS  Google Scholar 

  92. FEARNLEY JM, LEES AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(5):2283–301. https://doi.org/10.1093/brain/114.5.2283.

    Article  PubMed  Google Scholar 

  93. Aarsland D, Andersen K, Larsen JP, Lolk A. Prevalence and characteristics of dementia in Parkinson disease. Arch Neurol. 2003;60(3):387–92. https://doi.org/10.1001/archneur.60.3.387.

    Article  PubMed  Google Scholar 

  94. Buter TC, van den Hout A, Matthews FE, Larsen JP, Brayne C, Aarsland D. Dementia and survival in Parkinson disease: a 12-year population study. Neurology. 2008;70(13):1017–22. https://doi.org/10.1212/01.wnl.0000306632.43729.24.

    Article  CAS  PubMed  Google Scholar 

  95. Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–44. https://doi.org/10.1002/mds.21956.

    Article  PubMed  Google Scholar 

  96. Singleton AB. α-Synuclein locus triplication causes Parkinson’s disease. Science (80- ). 2003;302(5646):841. https://doi.org/10.1126/science.1090278.

    Article  CAS  Google Scholar 

  97. Li J-Q, Tan L, Yu J-T. The role of the LRRK2 gene in parkinsonism. Mol Neurodegener. 2014;9(1):47. https://doi.org/10.1186/1750-1326-9-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bardien S, Lesage S, Brice A, Carr J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(7):501–8. https://doi.org/10.1016/j.parkreldis.2010.11.008.

    Article  PubMed  Google Scholar 

  99. Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med. 2006;354(4):424–5. https://doi.org/10.1056/NEJMc055509.

    Article  CAS  PubMed  Google Scholar 

  100. Lesage S, Belarbi S, Troiano A, Condroyer C, Hecham N, Pollak P, et al. Is the common LRRK2 G2019S mutation related to dyskinesias in North African Parkinson disease? Neurology. 2008;71(19):1550–2. https://doi.org/10.1212/01.wnl.0000338460.89796.06.

    Article  CAS  PubMed  Google Scholar 

  101. Lesage S, Dürr A, Tazir M, Lohmann E, Leutenegger A-L, Janin S, et al. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med. 2006;354(4):422–3. https://doi.org/10.1056/NEJMc055540.

    Article  CAS  PubMed  Google Scholar 

  102. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61. https://doi.org/10.1056/NEJMoa0901281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, et al. Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol. 2016;98108(10):1–8. https://doi.org/10.1001/jamaneurol.2016.2245.

    Google Scholar 

  104. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, et al. GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Mov Disord. 2016;31(1):95–102. https://doi.org/10.1002/mds.26359.

    Article  CAS  PubMed  Google Scholar 

  105. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 2008;7(7):583–90. https://doi.org/10.1016/S1474-4422(08)70117-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Anheim M, Elbaz A, Lesage S, Durr A, Condroyer C, Viallet F, et al. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology. 2012;78(6):417–20. https://doi.org/10.1212/WNL.0b013e318245f476.

    Article  CAS  PubMed  Google Scholar 

  107. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86. https://doi.org/10.1016/j.cell.2017.05.038.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice S. Chen-Plotkin.

Ethics declarations

Conflict of Interest

Both authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurogenetics and Psychiatric Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Chen-Plotkin, A.S. Genetic Modifiers in Neurodegeneration. Curr Genet Med Rep 6, 11–19 (2018). https://doi.org/10.1007/s40142-018-0133-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-018-0133-1

Keywords

Navigation