Skip to main content

Advertisement

Log in

New in Newborn Screening

  • Clinical Genetics (D Finegold, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the nationwide implementation of the expanded newborn screen in 2006, five conditions have been added to the core screening panel. Three of these are rare classical inborn errors of metabolism, a traditional focus of newborn screening, namely Pompe disease, Hurler syndrome, and X-linked Adrenoleukodystrophy (XALD). This review will describe first experiences with screening for these conditions and will also critically appraise newborn screening for Krabbe disease which was implemented in some states.

Recent Findings

There is 1–3 years of experience with state-wide newborn screening for Pompe disease and XALD, and state-wide screening for Hurler syndrome is just beginning after pilot studies in one state. In addition, 8 years of experience with screening for Krabbe disease in New York was recently critically reviewed.

Summary

Infantile and late onset forms of Pompe disease are more common than anticipated and very early treated patients do show some sequelae. MPSI pilot data from one state indicated a detection rate of 1:14,567. The surveillance and treatment guidelines developed for XALD will take many years to evaluate because the disease may not manifest for years. Krabbe disease may not be suitable for newborn screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography/mass spectrometry to the analysis of acylcarnitines in human urine, blood, and tissue. Anal Biochem. 1989;180(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  2. Newborn screening: toward a uniform screening panel and system. Genet Med. 2006;8 Suppl 1:1S–252S.

  3. Kishnani PS, Hwu W-L, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148(5):671–6. e2

    Article  PubMed  Google Scholar 

  4. Leslie N, Tinkle BT. Glycogen storage disease type II (Pompe Disease). In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, et al., editors. GeneReviews(®) [Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 2017 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1261/.

  5. Hamdan MA, Almalik MH, Mirghani HM. Early administration of enzyme replacement therapy for Pompe disease: short-term follow-up results. J Inherit Metab Dis. 2008;31(2):431–6.

    Article  Google Scholar 

  6. Kishnani PS, Corzo D, Leslie ND, Gruskin D, van der Ploeg A, Clancy JP, et al. Early treatment with alglucosidase alfa prolongs long-term survival of infants with Pompe disease. Pediatr Res. 2009;66(3):329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Kishnani PS, Corzo D, Leslie ND, Gruskin D, Van der Ploeg A, Clancy JP, et al. Early treatment with alglucosidase alfa prolongs long-term survival of infants with Pompe disease. Pediatr Res. 2009;66(3):329–35. This paper provided the initial evidence that the earlier enzyme replacement is initiated in infantile Pompe disease, the better the outcome was for the affected individuals, suggesting newborn screening would be appropriate to consider.

  8. Kemper AR, Hwu W-L, Lloyd-Puryear M, Kishnani PS. Newborn screening for Pompe disease: synthesis of the evidence and development of screening recommendations. Pediatrics. 2007;120(5):e1327–34.

    Article  PubMed  Google Scholar 

  9. Burton BK. Newborn screening for Pompe disease: an update, 2011. Am J Med Genet. 2012;160C:8–12.

    Article  PubMed  Google Scholar 

  10. Yu C, Sun Q, Zhou H. Enzymatic screening and diagnosis of lysosomal storage diseases. N Am J Med Sci (Boston). 2013;6(4):186–93.

    Article  Google Scholar 

  11. Chien Y-H, Lee N-C, Thurberg BL, Chiang S-C, Zhang XK, Keutzer J, et al. Pompe disease in infants: improving the prognosis by newborn screening and early treatment. Pediatrics. 2009;124(6):e1116.

    Article  PubMed  Google Scholar 

  12. Chiang S-C, Hwu W-L, Lee N-C, Hsu L-W, Chien Y-H. Algorithm for Pompe disease newborn screening: results from the Taiwan screening program. Mol Genet Metab. 2012;106(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  13. Liao H-C, Chiang C-C, Niu D-M, Wang C-H, Kao S-M, Tsai F-J, et al. Detecting multiple lysosomal storage diseases by tandem mass spectrometry—a national newborn screening program in Taiwan. Clin Chim Acta. 2014;431:80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Chien Y-H, Hwu W-L, Lee N-C. Pompe disease: early diagnosis and early treatment make a difference. Pediatr Neonatol. 2013;54(4):219–27.

    Article  PubMed  Google Scholar 

  15. Labrousse P, Chien Y-H, Pomponio RJ, Keutzer J, Lee N-C, Akmaev VR, et al. Genetic heterozygosity and pseudodeficiency in the Pompe disease newborn screening pilot program. Mol Genet Metab. 2010;99(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  16. Oda E, Tanaka T, Migita O, Kosuga M, Fukushi M, Okumiya T, et al. Newborn screening for Pompe disease in Japan. Mol Genet Metab. 2011;104(4):560–5.

    Article  CAS  PubMed  Google Scholar 

  17. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJC, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–87.

    Article  PubMed  Google Scholar 

  18. •• Hopkins PV, Campbell C, Klug T, Rogers S, Raburn-Miller J, Kiesling J. Lysosomal storage disorder screening implementation: findings from the first six months of full population pilot testing in Missouri. J Pediatr. 2015;166(1):172–7. This study represents the first clinical data from the Missouri pilot program for both Pompe disease and MPS1 and has served to prove feasibility of these programs for other states, as well as guidelines for implementation.

    Article  PubMed  Google Scholar 

  19. Kumamoto S, Katafuchi T, Nakamura K, Endo F, Oda E, Okuyama T, et al. High frequency of acid α-glucosidase pseudodeficiency complicates newborn screening for glycogen storage disease type II in the Japanese population. Mol Genet Metab. 2009;97(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  20. Case LE, Beckemeyer AA, Kishnani PS. Infantile Pompe disease on ERT—update on clinical presentation, musculoskeletal management, and exercise considerations. Am J Med Genet. 2012;160C(1):69–79.

    Article  PubMed  Google Scholar 

  21. Kishnani PS, Beckemeyer AA. New therapeutic approaches for Pompe disease: enzyme replacement therapy and beyond. Pediatr Endocrinol Rev. 2014;12(Suppl 1):114–24.

    PubMed  Google Scholar 

  22. • Vogel BH, Bradley SE, Adams DJ, D’Aco K, Erbe RW, Fong C, et al. Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. Mol Genet Metab. 2015;114(4):599–603. This study summarizes the experience of New York State's pilot program for XALD and produced guidelines for diagnosis, surveillance and treatment for other states to utilize for implementation.

  23. Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJ, Aubourg P, et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012;7:51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muenzer J, Wraith JE, Clarke LA. International consensus panel on M, treatment of mucopolysaccharidosis I. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics. 2009;123(1):19–29.

    Article  PubMed  Google Scholar 

  25. Whitley CB, Belani KG, Chang PN, Summers CG, Blazar BR, Tsai MY, et al. Long-term outcome of hurler syndrome following bone marrow transplantation. Am J Med Genet. 1993;46(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  26. Peters C, Shapiro EG, Anderson J, Henslee-Downey PJ, Klemperer MR, Cowan MJ, et al. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The storage disease collaborative study group. Blood. 1998;91(7):2601–8.

    CAS  PubMed  Google Scholar 

  27. Peters C, Shapiro EG, Krivit W. Neuropsychological development in children with Hurler syndrome following hematopoietic stem cell transplantation. Pediatr Transplant. 1998;2(4):250–3.

    CAS  PubMed  Google Scholar 

  28. Vellodi A, Young EP, Cooper A, Wraith JE, Winchester B, Meaney C, et al. Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child. 1997;76(2):92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peters C, Steward CG. National Marrow Donor P, international bone marrow transplant R, working party on inborn errors EBMTG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant. 2003;31(4):229–39.

    Article  CAS  PubMed  Google Scholar 

  30. Souillet G, Guffon N, Maire I, Pujol M, Taylor P, Sevin F, et al. Outcome of 27 patients with Hurler’s syndrome transplanted from either related or unrelated haematopoietic stem cell sources. Bone Marrow Transplant. 2003;31(12):1105–17.

    Article  CAS  PubMed  Google Scholar 

  31. Staba SL, Escolar ML, Poe M, Kim Y, Martin PL, Szabolcs P, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med. 2004;350(19):1960–9.

    Article  CAS  PubMed  Google Scholar 

  32. Grigull L, Beilken A, Schrappe M, Das A, Luecke T, Sander A, et al. Transplantation of allogeneic CD34-selected stem cells after fludarabine-based conditioning regimen for children with mucopolysaccharidosis 1H (M. Hurler). Bone Marrow Transplant. 2005;35(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  33. • Poe MD, Chagnon SL, Escolar ML. Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol. 2014;76(5):747–53. The neurologic phenotypic improvement showed a direct correlation to the timing of HCST, establishing that early treatment substantially improves clinical outcomes in the most challenging realm for traditional enzyme replacement therapies.

    Article  PubMed  Google Scholar 

  34. Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis. 2016;39(2):189–202.

    Article  CAS  PubMed  Google Scholar 

  35. Lin SP, Lin HY, Wang TJ, Chang CY, Lin CH, Huang SF, et al. A pilot newborn screening program for mucopolysaccharidosis type I in Taiwan. Orphanet J Rare Dis. 2013;8:147.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wenger DA. Krabbe Disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al. 1993, editors. GeneReviews(R). Seattle (WA).

  37. Liao P, Gelinas J, Sirrs S. Phenotypic variability of Krabbe disease across the lifespan. Can J Neurol Sci. 2014;41(1):5–12.

    Article  PubMed  Google Scholar 

  38. McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM. Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements—initial experience. Radiology. 2005;236(1):221–30.

    Article  PubMed  Google Scholar 

  39. Provenzale JM, Escolar M, Kurtzberg J. Quantitative analysis of diffusion tensor imaging data in serial assessment of Krabbe disease. Ann N Y Acad Sci. 2005;1064:220–9.

    Article  PubMed  Google Scholar 

  40. Duffner PK, Granger C, Lyon N, Niewczyk P, Barczykowski A, Bauer S, et al. Developmental and functional outcomes in children with a positive newborn screen for Krabbe disease: a pilot study of a phone-based interview surveillance technique. J Pediatr. 2012;161(2):258–63. e1

    Article  PubMed  Google Scholar 

  41. Udow S, Bunge M, Ryner L, Mhanni AA, Salman MS. Prolonged survival and serial magnetic resonance imaging/magnetic resonance spectroscopy changes in infantile Krabbe disease. Pediatr Neurol. 2012;47(4):299–302.

    Article  PubMed  Google Scholar 

  42. Orsini JJ, Morrissey MA, Slavin LN, Wojcik M, Biski C, Martin M, et al. Implementation of newborn screening for Krabbe disease: population study and cutoff determination. Clin Biochem. 2009;42(9):877–84.

    Article  CAS  PubMed  Google Scholar 

  43. Orsini JJ, Kay DM, Saavedra-Matiz CA, Wenger DA, Duffner PK, Erbe RW, et al. Newborn screening for Krabbe disease in New York State: the first eight years’ experience. Genet Med. 2016;18(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  44. • Wasserstein MP, Andriola M, Arnold G, Aron A, Duffner P, Erbe RW, et al. Clinical outcomes of children with abnormal newborn screening results for Krabbe disease in New York State. Genet Med. 2016;18(12):1235–43. This study summarizes the long-term outcome to date for the largest cohort of patients identified with early infantile Krabbe disease with treatment outcomes and as well as a high-risk group and explores the complex ethical and implementation challenges that have been experienced.

    Article  PubMed  Google Scholar 

  45. Jalal K, Carter R, Yan L, Barczykowski A, Duffner PK. Does galactocerebrosidase activity predict Krabbe phenotype? Pediatr Neurol. 2012;47(5):324–9.

    Article  PubMed  Google Scholar 

  46. Wenger DA, Luzi P, Rafi MA. Krabbe disease: are certain mutations disease-causing only when specific polymorphisms are present or when inherited in trans with specific second mutations? Mol Genet Metab. 2014;111(3):307–8.

    Article  CAS  PubMed  Google Scholar 

  47. Szymanska K, Lugowska A, Laure-Kamionowska M, Bekiesinska-Figatowska M, Gieruszczak-Bialek D, Musielak M, et al. Diagnostic difficulties in Krabbe disease: a report of two cases and review of literature. Folia Neuropathol. 2012;50(4):346–56.

    Article  PubMed  Google Scholar 

  48. Sakai N, Otomo T. Challenge of phenotype estimation for optimal treatment of Krabbe disease. J Neurosci Res. 2016;94(11):1025–30.

    Article  CAS  PubMed  Google Scholar 

  49. Macarov M, Zlotogora J, Meiner V, Khatib Z, Sury V, Mengistu G, et al. Genetic screening for Krabbe disease: learning from the past and looking to the future. Am J Med Genet A. 2011;155A(3):574–6.

    Article  PubMed  Google Scholar 

  50. Kemper AR, Knapp AA, Green NS, Comeau AM, Metterville DR, Perrin JM. Weighing the evidence for newborn screening for early-infantile Krabbe disease. Genet Med. 2010;12(9):539–43.

    Article  PubMed  Google Scholar 

  51. Dimmock DP. Should states adopt newborn screening for early infantile Krabbe disease? Genet Med. 2016;18(3):217–20.

    Article  CAS  PubMed  Google Scholar 

  52. Sano TS. Krabbe disease: the importance of early diagnosis for prognosis. Einstein (Sao Paulo). 2012;10(2):233–5. Neurosci Res. 2016;94(11):1203–19.

    Article  Google Scholar 

  53. Escolar ML, West T, Dallavecchia A, Poe MD, LaPoint K. Clinical management of Krabbe disease. J Neurosci Res. 2016;94(11):1118–25.

    Article  CAS  PubMed  Google Scholar 

  54. Rafi MA. Gene therapy for CNS diseases—Krabbe disease. Bioimpacts. 2016;6(2):69–70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hossain MA, Higaki K, Saito S, Ohno K, Sakuraba H, Nanba E, et al. Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations. J Hum Genet. 2015;60(9):539–45.

    Article  CAS  PubMed  Google Scholar 

  56. Spratley SJ, Deane JE. New therapeutic approaches for Krabbe disease: the potential of pharmacological chaperones. J Neurosci Res. 2016;94(11):1203–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bongarzone ER, Escolar ML, Gray SJ, Kafri T, Vite CH, Sands MS. Insights into the pathogenesis and treatment of Krabbe disease. Pediatr Endocrinol Rev. 2016;13(Suppl 1):689–96.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Lichter-Konecki.

Ethics declarations

Conflict of Interest

Damara Ortiz reports no conflict of interest. Uta Lichter-Konecki declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, D., Lichter-Konecki, U. New in Newborn Screening. Curr Genet Med Rep 5, 143–148 (2017). https://doi.org/10.1007/s40142-017-0126-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-017-0126-5

Keywords

Navigation