Skip to main content

Advertisement

Log in

Expansion and Implications of Newborn Screening

  • Clinical Genetics (JM Stoler, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Newborn screening (NBS) for phenylketonuria in the early 1960s represented a veritable revolution in public health. It added population screening for prevention of intellectual disability to public health that had been limited to testing and epidemiological follow-up of infectious diseases. Over time, NBS has progressively expanded with additional metabolic and non-metabolic disorders in which early pre-symptomatic detection allows prevention of developmental disability or death. NBS continues to evolve with programs in development to screen for an unprecedented number of conditions. Previously, untreatable conditions, such as Duchenne muscular dystrophy and Fragile X syndrome, have new treatments emerging and are now under debate for screening. The criteria of Wilson and Jungner, previously used to justify screening, are being applied to technologies that allow far more screening options than when these criteria were developed. Genomic and DNA-based NBS could accelerate expansion, though with serious challenges related to cost, ethics, infrastructure, and education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  2. Guthrie R. Screening for “inborn errors of metabolism” in the newborn infant—a multiple test program. Birth Def Orig Art Ser. 1968;4:92.

    Google Scholar 

  3. Chace DH, Millington DS, Terada N, Kahler SG, Roe CR, Hofman LF. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem. 1993;39:66–71.

    CAS  PubMed  Google Scholar 

  4. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49:1797–817.

    Article  CAS  PubMed  Google Scholar 

  5. • Landau YE, Lichter-Konecki U, Levy HL. Genomics in newborn screening. J Pediatr. 2014;164:14–9. This article outlines the genetic techniques used in newborn screening.

  6. Guthrie R. The origin of newborn screening. Screening. 1992;1:5–15.

    Article  CAS  PubMed  Google Scholar 

  7. Lesser AJ. Phenylketonuria and the Guthrie test. Pediatrics. 1963;32:940.

    CAS  PubMed  Google Scholar 

  8. Guthrie R, Murphey W. Microbiologic screening procedures for detection of inborn errors of metabolism in the newborn infant. In: Bickel H, Hudson FP, Woolf LI, editors. Phenylketonuria some other inborn errors amino acid metabolism. Stuttgart: Georg Thieme; 1971.

    Google Scholar 

  9. Wilson JM, Jungner YG. Principles and practice of mass screening for disease. Bol Oficina Sanit Panam. 1968;65:281–393.

    CAS  PubMed  Google Scholar 

  10. Klein AH, Agustin AV, Foley TP. Successful laboratory screening for congenital hypothyroidism. Lancet. 1974;2:77–9.

    Article  CAS  PubMed  Google Scholar 

  11. Brosco JP, Sanders LM, Seider MI, Dunn AC. Adverse medical outcomes of early newborn screening programs for phenylketonuria. Pediatrics. 2008;122:192–7.

    Article  PubMed  Google Scholar 

  12. Pena L, Angle B, Burton B, Charrow J. Follow-up of patients with short-chain acyl-CoA dehydrogenase and isobutyryl-CoA dehydrogenase deficiencies identified through newborn screening: one center’s experience. Genet Med. 2012;14:342–7.

    Article  CAS  PubMed  Google Scholar 

  13. Stadler SC, Polanetz R, Maier EM, Heidenreich SC, Niederer B, Mayerhofer PU, et al. Newborn screening for 3-methylcrotonyl-CoA carboxylase deficiency: population heterogeneity of MCCA and MCCB mutations and impact on risk assessment. Hum Mutat. 2006;27:748–59.

    Article  CAS  PubMed  Google Scholar 

  14. Spiekerkoetter U, Sun B, Zytkovicz T, Wanders R, Strauss AW, Wendel U. MS/MS-based newborn and family screening detects asymptomatic patients with very-long-chain acyl-CoA dehydrogenase deficiency. J Pediatr. 2003;143:335–42.

    Article  PubMed  Google Scholar 

  15. Ensenauer R, Vockley J, Willard J-M, Huey JC, Sass JO, Edland SD, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75:1136–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Petros M. Revisiting the Wilson-Jungner criteria: how can supplemental criteria guide public health in the era of genetic screening? Genet Med. 2012;14:129–34.

    Article  PubMed  Google Scholar 

  17. Scheuerbrandt G, Lundin A, Lövgren T, Mortier W. Screening for Duchenne muscular dystrophy: an improved screening test for creatine kinase and its application in an infant screening program. Muscle Nerve. 1986;9:11–23.

    Article  CAS  PubMed  Google Scholar 

  18. Greenberg CR, Rohringer M, Jacobs HK, Averill N, Nylen E, van Ommen GJ, et al. Gene studies in newborn males with Duchenne muscular dystrophy detected by neonatal screening. Lancet. 1988;2:425–7.

    Article  CAS  PubMed  Google Scholar 

  19. Massachusetts Department of Public Health. Sickle cell-point, counterpoint. N Engl J Med. 1973;289:323–4.

  20. Farrell PM, Kosorok MR, Rock MJ, Laxova A, Zeng L, Lai HC, et al. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics. 2001;107:1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Levy HL. Newborn screening: the genomic challenge. Mol Genet Genomic Med. 2014;2:81–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Watson MS, Mann MY, Lloyd-puryear MA, Rinaldo P. Newborn screening: toward a uniform screening panel and system. Genet Med. 2006;8(1):1S–252S.

    Article  Google Scholar 

  23. Medicine Wilcken B. Newborn screening: gaps in the evidence. Science. 2013;342:197–8.

    Article  Google Scholar 

  24. Yusupov R, Finegold DN, Naylor EW, Sahai I, Waisbren S, Levy HL. Sudden death in medium chain acyl-coenzyme a dehydrogenase deficiency (MCADD) despite newborn screening. Mol Genet Metab. 2010;101:33–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wilcken B. Expanded newborn screening: reducing harm, assessing benefit. J Inherit Metab Dis. 2010;33:S205–10.

    Article  PubMed  Google Scholar 

  26. Waisbren SE, Albers S, Amato S, Ampola M, Brewster TG, Demmer L, et al. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA. 2003;290:2564–72.

    Article  CAS  PubMed  Google Scholar 

  27. McClain MR, McGrath RJ, Stransky ML, Benkendorf JL. National survey of providers treating patients with metabolic disorders identified by newborn screening demonstrates challenges faced by clinical care systems. Clin Pediatr (Phila). 2015;54(8):759-64.

    Article  Google Scholar 

  28. Wilcken B, Haas M, Joy P, Wiley V, Chaplin M, Black C, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet. 2007;369:37–42.

    Article  CAS  PubMed  Google Scholar 

  29. Jay AM, Conway RL, Feldman GL, Nahhas F, Spencer L, Wolf B. Outcomes of individuals with profound and partial biotinidase deficiency ascertained by newborn screening in Michigan over 25 years. Genet Med. 2014. doi:10.1038/gim.2014.104.

    PubMed  Google Scholar 

  30. •• Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38. This study presented data from a spectrum of SCID newborn screening programs including detection of SCID and non-SCID T cell lymphopenias.

  31. Universal screening for hearing loss in newborns. US Preventive Services Task Force recommendation statement. Pediatrics. 2008;122:143–8.

    Article  Google Scholar 

  32. Mahle WT, Martin GR, Beekman RH, Morrow WR, Rosenthal GL, Snyder CS, et al. Endorsement of health and human services recommendation for pulse oximetry screening for critical congenital heart disease. Pediatrics. 2012;129:190–2.

    Article  PubMed  Google Scholar 

  33. Johnson L, Lieberman E, O’Leary E, Geggel RL. Prenatal and newborn screening for critical congenital heart disease: findings from a nursery. Pediatrics. 2014;134:916–22.

    Article  PubMed  Google Scholar 

  34. Wang RY, Bodamer OA, Watson MS, Wilcox WR. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med. 2011;13:457–84.

    Article  PubMed  Google Scholar 

  35. Bouwman MG, de Ru MH, Linthorst GE, Hollak CEM, Wijburg FA, van Zwieten MCB. Fabry patients’ experiences with the timing of diagnosis relevant for the discussion on newborn screening. Mol Genet Metab. 2013;109:201–7.

    Article  CAS  PubMed  Google Scholar 

  36. Puckett RL, Orsini JJ, Pastores GM, Wang RY, Chang R, Saavedra-Matiz CA, et al. Krabbe disease: Clinical, biochemical and molecular information on six new patients and successful retrospective diagnosis using stored newborn screening cards. Mol Genet Metab. 2012;105:126–31.

    Article  CAS  PubMed  Google Scholar 

  37. Chien Y-H, Lee N-C, Chen C-A, Tsai F-J, Tsai W-H, Shieh J-Y, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr. 2014. doi:10.1016/j.jpeds.2014.10.068.

    PubMed  Google Scholar 

  38. Burwell SM. (Department of Health and Human Services). Letter to: Bocchini JA. (Discretionary Advisory Committee on Heritable Disorders in Newborns and Children). Secretary’s Final Response RE Committee’s Recommendation to add Pompe Disease to the Recommended Uniform Screening Panel. 2015:2.

  39. Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14:135–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pillers DA. A new day for Duchenne’s?: The time has come for newborn screening. Mol Genet Metab. 2014;113:11–3.

    Article  CAS  PubMed  Google Scholar 

  42. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378:595–605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mendell JR, Shilling C, Leslie ND, Flanigan KM, Al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for duchenne muscular dystrophy. Ann Neurol. 2012;71:304–13.

    Article  CAS  PubMed  Google Scholar 

  44. Turgeon CT, Moser AB, Mørkrid L, Magera MJ, Gavrilov DK, Oglesbee D, et al. Streamlined determination of lysophosphatidylcholines in dried blood spots for newborn screening of X-linked adrenoleukodystrophy. Mol Genet Metab. 2015;114:46–50.

    Article  CAS  PubMed  Google Scholar 

  45. Leigh MJS, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr. 2013;34:147–55.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M, Walton-Bowen K, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med. 2012;4:152ra127.

    PubMed  Google Scholar 

  47. Tassone F. Newborn screening for fragile X syndrome. JAMA Neurol. 2014;71:355–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. •• Bhattacharjee A, Sokolsky T, Wyman SK, Reese MG, Puffenberger E, Strauss K, et al. Development of DNA confirmatory and high-risk diagnostic testing for newborns using targeted next-generation DNA sequencing. Genet Med. 2014. doi:10.1038/gim.2014.117. This study evaluated use of a next-generation sequencing panel to screen for newborn specific disorders laying a foundation for DNA-based testing options for newborns.

  49. Vockley J. Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis. 2008;31:619–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med. 2012;14:759–61.

    Article  Google Scholar 

  51. Waisbren SE, Bäck DK, Liu C, Kalia SS, Ringer SA, Holm IA, et al. Parents are interested in newborn genomic testing during the early postpartum period. Genet Med. 2014. doi:10.1038/gim.2014.139.

    Google Scholar 

  52. Hasegawa LE, Fergus KA, Ojeda N, Au SM. Parental attitudes toward ethical and social issues surrounding the expansion of newborn screening using new technologies. Public Health Genomics. 2011;14:298–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ulm E, Feero WG, Dineen R, Charrow J, Wicklund C. Genetics professionals’ opinions of whole-genome sequencing in the newborn period. J Genet Couns. 2014. doi:10.1007/s10897-014-9779-3.

    PubMed  Google Scholar 

  54. Bombard Y, Miller FA, Hayeems RZ, Avard D, Knoppers BM. Reconsidering reproductive benefit through newborn screening: a systematic review of guidelines on preconception, prenatal and newborn screening. Eur J Hum Genet. 2010;18:751–60.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Benn P, Cuckle H, Pergament E. Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol. 2013;42:15–33.

    Article  CAS  PubMed  Google Scholar 

  56. Lo YM, Hjelm NM, Fidler C, Sargent IL, Murphy MF, Chamberlain PF, et al. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med. 1998;339:1734–8.

    Article  CAS  PubMed  Google Scholar 

  57. Chitty LS, Finning K, Wade A, Soothill P, Martin B, Oxenford K, et al. Diagnostic accuracy of routine antenatal determination of fetal RHD status across gestation: population based cohort study. BMJ. 2014;349:g5243.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Disclosure

F. Rajiabi and H. L. Levy both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey L. Levy.

Additional information

This article is part of the Topical Collection on Clinical Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, F., Levy, H.L. Expansion and Implications of Newborn Screening. Curr Genet Med Rep 3, 110–117 (2015). https://doi.org/10.1007/s40142-015-0070-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-015-0070-1

Keywords

Navigation