Skip to main content

Advertisement

Log in

Musculoskeletal Issues and Care Specific to the Female Athlete

  • Women’s Health Rehabilitation (S Bennis and C Fitzgerald, Section Editors)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This chapter aims to provide recent updates in the literature regarding musculoskeletal issues in the female athlete that affects their care. The content will aim to supply specific history, physical exam, diagnostic and treatment pearls for medical providers caring for female athletes.

Recent Findings

Female athletes are more likely to be injured and spend more time away from sport due to their injuries when compared with their male counterparts. The causes of these issues have been found to be multifactorial due to anatomic differences, hormonal influences, and biomechanical patterns that predispose females to injury.

Summary

Female and male athletes differ in the types of injuries they sustain and the contributing factors that lead to these injuries. This allows the unique opportunity to study these variables and how they can individualize prevention and treatment strategies for each sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lynall RC, Kerr ZY, Djoko A, Pluim BM, Hainline B, Dompier TP. Epidemiology of National Collegiate Athletic Association men’s and women’s tennis injuries, 2009/2010–2014/2015. 2016. https://doi.org/10.1136/bjsports-2015-095360.

  2. Baugh CM, Weintraub GS, Gregory AJ, Djoko A, Dompier TP, Kerr ZY. Descriptive epidemiology of injuries sustained in National Collegiate Athletic Association Men’s and Women’s Volleyball, 2013–2014 to 2014–2015. https://doi.org/10.1177/1941738117733685. 2017.

  3. Stracciolini A, Casciano R, Friedman HL, Stein CJ, William P. Meehan, III, Micheli LJ. Pediatric sports injuries: a comparison of males versus females. https://doi.org/10.1177/0363546514522393. 2014.

  4. Roos KG, Wasserman EB, Dalton SL, Gray A, Djoko A, Dompier TP et al. Epidemiology of 3825 injuries sustained in six seasons of National Collegiate Athletic Association men’s and women’s soccer (2009/2010–2014/2015). 2017. https://doi.org/10.1136/bjsports-2015-095718.

  5. Kerr ZY, Kroshus E, Grant J, Parsons JT, Folger D, Hayden R et al. Epidemiology of National Collegiate Athletic Association Men’s and Women’s cross-country injuries, 2009–2010 through 2013–2014. https://doi.org/10.4085/1062-6050-51.1.10. 2016.

  6. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. Journal of Athletic Training.42(2):311–9.

  7. American Association of Physical Anthropologists. Annual m. Variation in pelvic size between males and females. Program of the Annual Meeting of the American Association of Physical Anthropologists 1989;80(1):59–71. https://doi.org/10.1002/ajpa.1330800108.

  8. Wolf JM, Cannada L, Van Heest AE, O’Connor MI, Ladd AL. Male and female differences in musculoskeletal disease. J Am Acad Orthop Surg. 2015;23(6):339–47. https://doi.org/10.5435/JAAOS-D-14-00020.

    Article  PubMed  Google Scholar 

  9. Russek LN, Errico DM. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a “healthy” college population. Clin Rheumatol. 2016;35(4):1029–39. https://doi.org/10.1007/s10067-015-2951-9.

    Article  PubMed  Google Scholar 

  10. •• Griffin, D. R., Dickenson, E. J., O’donnell, J., Awan, T., Beck, M., Clohisy, J. C., ... & Hölmich, P. (2016). The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med, 50(19), 1169–1176. Consensus update on definition of FAI syndrome, history, physical exam, imaging, and conservative and surgical management.

  11. Agricola R, Weinans H. What is femoroacetabular impingement? Br J Sports Med. 2016;50(4):196–7. https://doi.org/10.1136/bjsports-2015-094766.

    Article  PubMed  CAS  Google Scholar 

  12. • Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clinical Orthopaedics and Related Research®. 2003 1;417:112–20. Classic article cited by multiple research studies on the definition of types of FAI and physical exam findings.

  13. Clohisy JC, Knaus ER, Hunt DM, Lesher JM, Harris-Hayes M, Prather H. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467(3):638–44. https://doi.org/10.1007/s11999-008-0680-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klingenstein GG, Zbeda RM, Bedi A, Magennis E, Kelly BT. Prevalence and preoperative demographic and radiographic predictors of bilateral femoroacetabular impingement. Am J Sports Med. 2013;41(4):762–8. https://doi.org/10.1177/0363546513476854.

    Article  PubMed  Google Scholar 

  15. • Nepple JJ, Riggs CN, Ross JR, Clohisy JC. Clinical presentation and disease characteristics of femoroacetabular impingement are sex-dependent. JBJS. 2014;96(20):1683–9. This is a prospective study of 50 male and 50 female patients with FAI syndrome detailing their presentation and radiographic and intraoperative findings.

  16. Clohisy JC, Carlisle JC, Beaulé PE, Kim YJ, Trousdale RT, Sierra RJ et al. A systematic approach to the plain radiographic evaluation of the young adult hip. J Bone Joint Surg Am. Suppl 4 2008. p. 47–66.

  17. Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CWA. How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers? Radiology. 2012;264(2):514–21. https://doi.org/10.1148/radiol.12112479.

    Article  PubMed  Google Scholar 

  18. Bixby SD, Kienle K-P, Nasreddine A, Zurakowski D, Kim Y-J, Yen Y-M. Reference values for proximal femoral anatomy in adolescents based on sex, physis, and imaging plane. Am J Sports Med. 2013;41(9):2074–82. https://doi.org/10.1177/0363546513495346.

    Article  PubMed  Google Scholar 

  19. Hack K, Di Primio G, Rakhra K, Beaulé PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg. 2010;92(14):2436–44. https://doi.org/10.2106/JBJS.J.01280.

    Article  PubMed  Google Scholar 

  20. Jung KA, Restrepo C, Hellman M, AbdelSalam H, Morrison W, Parvizi J. The prevalence of cam-type femoroacetabular deformity in asymptomatic adults. The journal of bone and joint surgery - British. 2011;93(10):1303–7. https://doi.org/10.1302/0301-620X.93B10.26433.

    Article  CAS  Google Scholar 

  21. Smith TO, Daniell H, Geere J-A, Toms AP, Hing CB. The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn Reson Imaging. 2012;30(3):336–46. https://doi.org/10.1016/j.mri.2011.12.008.

    Article  PubMed  Google Scholar 

  22. Sundberg TP, Toomayan GA, Major NM. Evaluation of the acetabular labrum at 3.0-T MR imaging compared with 1.5-T MR arthrography: preliminary experience 1. 2006. doi:https://doi.org/10.1148/radiol.2382050165.

  23. Hetsroni I, Dela Torre K, Duke G, Lyman S, Kelly BT. Sex differences of hip morphology in young adults with hip pain and labral tears. Arthroscopy : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2013;29(1):54–63. https://doi.org/10.1016/j.arthro.2012.07.008.

    Article  Google Scholar 

  24. Hooper P, Oak SR, Lynch TS, Ibrahim G, Goodwin R, Rosneck J. Adolescent femoroacetabular impingement: gender differences in hip morphology. Arthroscopy : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2016;32(12):2495–502. https://doi.org/10.1016/j.arthro.2016.06.015.

    Article  Google Scholar 

  25. • Tresch, F., Dietrich, T. J., Pfirrmann, C. W., & Sutter, R. (2017). Hip MRI: prevalence of articular cartilage defects and labral tears in asymptomatic volunteers. A comparison with a matched population of patients with femoroacetabular impingement. Journal of Magnetic Resonance Imaging, 46(2), 440–451. This is a prospective study of a total of 63 asymptomatic volunteers and 63 patients with symptomatic FAI between 20 and 50 years who underwent 1.5-T MRI. Study found FAI, cartilage, and labral lesions in both groups. Males in both groups had larger lesions in all categories.

  26. Mascarenhas VV, Rego P, Dantas P, Gaspar A, Soldado F, Consciência JG. Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects. Eur Radiol. 2017;27(5):2011–23. https://doi.org/10.1007/s00330-016-4530-0.

    Article  PubMed  Google Scholar 

  27. Czuppon S, Prather H, Hunt DM, Steger-May K, Bloom NJ, Clohisy JC, et al. Gender-dependent differences in hip range of motion and impingement testing in asymptomatic college freshman athletes. PM & R : the journal of injury, function, and rehabilitation. 2017;9(7):660–7. https://doi.org/10.1016/j.pmrj.2016.10.022.

    Article  Google Scholar 

  28. • Kierkegaard, S., Mechlenburg, I., Lund, B., Søballe, K., & Dalgas, U. (2017). Impaired hip muscle strength in patients with femoroacetabular impingement syndrome. Journal of science and medicine in sport, 20(12), 1062-1067. This is a prospective study that analyzed the hip strength in asymptomatic volunteers compared with patients with FAI syndrome and found females had a 19–36% strength deficit in symptomatic hips that was not seen in males.

  29. Verrelst R, Van Tiggelen D, De Ridder R, Witvrouw E. Decreased average power of the hip external muscles as a predictive parameter for lower extremity injury in women. Clin J Sport Med. 2018;28(6):533–7. https://doi.org/10.1097/JSM.0000000000000481.

    Article  PubMed  Google Scholar 

  30. Reiman MP. Diagnostic accuracy of clinical tests for the diagnosis of hip femoroacetabular impingement/labral tear: a systematic review with meta-analysis.

  31. King MG, Heerey JJ, Schache AG, Semciw AI, Middleton KJ, Sritharan P, et al. Lower limb biomechanics during low- and high-impact functional tasks differ between men and women with hip-related groin pain. Clin Biomech. 2019;68:96–103. https://doi.org/10.1016/j.clinbiomech.2019.06.001.

    Article  Google Scholar 

  32. • Wright AA, Hegedus EJ, Taylor JB, Dischiavi SL, Stubbs AJ. Non-operative management of femoroacetabular impingement: a prospective, randomized controlled clinical trial pilot study. Journal of science and medicine in sport. 2016;19(9):716-21. Randomized, double-blinded controlled trial pilot study of combination of manual therapy and supervised exercise (MTEX), plus advice and home exercise or advice and home exercise alone (Ad + HEP) over 6 weeks. In this small pilot study, manual therapy and exercise did not have greater improvement than home exercise and advice alone.

  33. Emara K, Samir W, Motasem ELH, Ghafar KAEL. Conservative treatment for mild femoroacetabular impingement. J Orthop Surg. 2011;19(1):41–5. https://doi.org/10.1177/230949901101900109.

    Article  Google Scholar 

  34. Lewis CL, Sahrmann SA. Acetabular labral tears. Physical therapy : journal of the American Physical Therapy Association. 2006;86(1):110–21. https://doi.org/10.1093/ptj/86.1.110.

    Article  Google Scholar 

  35. Casartelli NC, Maffiuletti NA, Bizzini M, Kelly BT, Naal FD, Leunig M. The management of symptomatic femoroacetabular impingement: what is the rationale for non-surgical treatment? Br J Sports Med. 2016;50(9):511–2. https://doi.org/10.1136/bjsports-2015-095722.

    Article  PubMed  Google Scholar 

  36. • Frank, R. M., Kunze, K. N., Beck, E. C., Neal, W. H., Bush-Joseph, C. A., & Nho, S. J. (2019). Do female athletes return to sports after hip preservation surgery for femoroacetabular impingement syndrome?: a comparative analysis. Orthopaedic Journal of Sports Medicine. This study analyzed preoperative and postoperative outcomes of 221 female athletes and 109 female non-athletes who underwent surgery for symptomatic FAI. Athletes age < 25 yo and athletes versus non-athletes had better postoperative outcomes. 93.7% of athletes returned to sport on an average of 6 months at a similar or higher level of competition.

  37. Murata Y, Uchida S, Utsunomiya H, Hatakeyama A, Nakamura E, Sakai A. A comparison of clinical outcome between athletes and nonathletes undergoing hip arthroscopy for femoroacetabular impingement. Clin J Sport Med. 2017;27(4):349–56. https://doi.org/10.1097/JSM.0000000000000367.

    Article  PubMed  Google Scholar 

  38. Beck EC. Section of Young Adult Hip Surgery DoSMDoOSRUMCWHSSCILUSA, Kunze KN, Section of Young Adult Hip Surgery DoSMDoOSRUMCWHSSCILUSA, Friel NA, Department of Orthopaedic Surgery SsHfCSCAUSA et al. Is there a correlation between outcomes after hip arthroscopy for femoroacetabular impingement syndrome and patient cortical bone thickness? Journal of Hip Preservation Surgery. 2020;6(1):16–24. https://doi.org/10.1093/jhps/hnz010.

    Article  Google Scholar 

  39. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70. https://doi.org/10.1177/0363546514542796.

    Article  PubMed  Google Scholar 

  40. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. Am J Sports Med. 1995;23(6):694–701. https://doi.org/10.1177/036354659502300611.

    Article  PubMed  CAS  Google Scholar 

  41. Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao T-C. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28(1):98–102. https://doi.org/10.1177/03635465000280012901.

    Article  PubMed  CAS  Google Scholar 

  43. Vacek PM, Slauterbeck JR, Tourville TW, Sturnick DR, Holterman L-A, Smith HC, et al. Multivariate analysis of the risk factors for first-time noncontact ACL injury in high school and college athletes. Am J Sports Med. 2016;44(6):1492–501. https://doi.org/10.1177/0363546516634682.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin CY, Casey E, Herman DC, Katz N, Tenforde AS. Sex differences in common sports injuries. PM & R : the journal of injury, function, and rehabilitation. 2018;10(10):1073–82. https://doi.org/10.1016/j.pmrj.2018.03.008.

    Article  Google Scholar 

  45. Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med. 2009;37(11):2234–40. https://doi.org/10.1177/0363546509338266.

    Article  PubMed  Google Scholar 

  46. Pj M, Department of Human Movement Studies UoWAN, Rn M, Ja M. Important features associated with acute anterior cruciate ligament injury. The New Zealand Medical Journal 2020;103(901):537–539.

  47. Silvers HJ, Mandelbaum BR. Prevention of anterior cruciate ligament injury in the female athlete. Br J Sports Med. 2007;41(Suppl 1):i52–i9. https://doi.org/10.1136/bjsm.2007.037200.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Beynnon BD, Hall JS, Sturnick DR, DeSarno MJ, Gardner-Morse M, Tourville TW, et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males. Am J Sports Med. 2014;42(5):1039–48. https://doi.org/10.1177/0363546514523721.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, et al. Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL. Am J Sports Med. 2014;42(8):1796–805. https://doi.org/10.1177/0363546514534182.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry. Am J Sports Med. 2005;33(10):1492–8. https://doi.org/10.1177/0363546504274149.

    Article  PubMed  Google Scholar 

  51. •• Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS. ACL research retreat VII: an update on anterior cruciate ligament injury risk factor identification, screening, and prevention: March 19–21, 2015; Greensboro, NC. Journal of athletic training. 2015 Oct;50(10):1076–93. Consensus update on recent research in the field of ACL injury risk factors based on history, anatomy, hormonal influences, physical exam, and neuromuscular function. Also discusses updates on screening tools and prevention strategies.

  52. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. https://doi.org/10.1177/0363546504269591.

    Article  PubMed  Google Scholar 

  53. Myer GD, Ford KR, Di Stasi SL, Foss KDB, Micheli LJ, Hewett TE. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med. 2015;49(2):118–22. https://doi.org/10.1136/bjsports-2013-092536.

    Article  PubMed  Google Scholar 

  54. Pfeiffer TR, Kanakamedala AC, Herbst E, Nagai K, Murphy C, Burnham JM, et al. Female sex is associated with greater rotatory knee laxity in collegiate athletes. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2018;26(5):1319–25. https://doi.org/10.1007/s00167-017-4684-6.

    Article  Google Scholar 

  55. Dragoo JL, Castillo TN, Braun HJ, Ridley BA, Kennedy AC, Golish SR. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med. 2011;39(10):2175–80. https://doi.org/10.1177/0363546511413378.

    Article  PubMed  Google Scholar 

  56. Adachi N, Nawata K, Maeta M, Kurozawa Y. Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes. Arch Orthop Trauma Surg. 2008;128(5):473–8. https://doi.org/10.1007/s00402-007-0461-1.

    Article  PubMed  Google Scholar 

  57. Herzberg SD, Motu’apuaka ML, Lambert W, Fu R, Brady J, Guise J-M. The effect of menstrual cycle and contraceptives on ACL injuries and laxity: a systematic review and meta-analysis. Orthopaedic journal of sports medicine. 2017;5(7):232596711771878. https://doi.org/10.1177/2325967117718781.

    Article  Google Scholar 

  58. Slauterbeck JR, Fuzie SF, Smith MP, Clark RJ, Xu K, Starch DW, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37(3):275–8.

    PubMed  PubMed Central  Google Scholar 

  59. Park SK, Stefanyshyn DJ, Ramage B, Hart DA, Ronsky JL. Relationship between knee joint laxity and knee joint mechanics during the menstrual cycle. Br J Sports Med. 2009;43(3):174–9. https://doi.org/10.1136/bjsm.2008.049270.

    Article  PubMed  Google Scholar 

  60. Gray AM, Gugala Z, Baillargeon JG. Effects of oral contraceptive use on anterior cruciate ligament injury epidemiology. Med Sci Sports Exerc. 2016;48(4):648–54. https://doi.org/10.1249/MSS.0000000000000806.

    Article  PubMed  Google Scholar 

  61. Rahr-Wagner L, Thillemann TM, Mehnert F, Pedersen AB, Lind M. Is the use of oral contraceptives associated with operatively treated anterior cruciate ligament injury? Am J Sports Med. 2014;42(12):2897–905. https://doi.org/10.1177/0363546514557240.

    Article  PubMed  Google Scholar 

  62. Noyes FR, Barber-Westin SD. Neuromuscular retraining intervention programs: do they reduce noncontact anterior cruciate ligament injury rates in adolescent female athletes? Arthroscopy : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2014;30(2):245–55. https://doi.org/10.1016/j.arthro.2013.10.009.

    Article  Google Scholar 

  63. Sadoghi P, von Keudell A, Vavken P. Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg. 2012;94(9):769–76. https://doi.org/10.2106/JBJS.K.00467.

    Article  PubMed  Google Scholar 

  64. Herman K, Barton C, Malliaras P, Morrissey D. The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review. BMC Med. 2012;10(1):75. https://doi.org/10.1186/1741-7015-10-75.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. The American journal of sports medicine. 2019 Jun;47(7):1744–53. Systematic review and meta-analysis revealed that ACL neuromuscular training programs targeting middle school– or high school–aged athletes reduced the risk of ACL injuries. Programs should incorporate lower body strengthening and landing stabilization throughout the sport seasons.

  66. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes. Am J Sports Med. 2005;33(7):1003–10. https://doi.org/10.1177/0363546504272261.

    Article  PubMed  Google Scholar 

  67. Webster KE, Feller JA. Return to level I sports after anterior cruciate ligament reconstruction: evaluation of age, sex, and readiness to return criteria. Orthopaedic journal of sports medicine. 2018;6(8):232596711878804. https://doi.org/10.1177/2325967118788045.

    Article  Google Scholar 

  68. Collins JE, Katz JN, Donnell-Fink LA, Martin SD, Losina E. Cumulative incidence of ACL reconstruction after ACL injury in adults. Am J Sports Med. 2013;41(3):544–9. https://doi.org/10.1177/0363546512472042.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nordenvall R, Bahmanyar S, Adami J, Stenros C, Wredmark T, Felländer-Tsai L. A population-based nationwide study of cruciate ligament injury in Sweden, 2001-2009. Am J Sports Med. 2012;40(8):1808–13. https://doi.org/10.1177/0363546512449306.

    Article  PubMed  Google Scholar 

  70. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2011;39(3):538–43. https://doi.org/10.1177/0363546510384798.

    Article  PubMed  Google Scholar 

  71. • Kostyun RO, Burland JP, Kostyun KJ, Milewski MD, Nissen CW. Male and female adolescent athletes’ readiness to return to sport after anterior cruciate ligament injury and reconstruction. Clinical journal of sport medicine: official journal of the Canadian Academy of Sport Medicine. 2019 Nov. This was a prospective cohort study of 93 athletes < 17 yo who underwent ACL reconstruction surgery with a hamstring autograft and measured their return to sport readiness postoperatively. Female athletes reported lower readiness to return to sport when compared with males at preop, 3 months postop, and during return to sport phases of recovery.

  72. Km S. Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg. 2013;21(1):41.

    Article  Google Scholar 

  73. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78. https://doi.org/10.1177/0363546510376053.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Culvenor AG, Collins NJ, Guermazi A, Cook JL, Vicenzino B, Khan KM, et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis & rheumatology. 2015;67(4):946–55. https://doi.org/10.1002/art.39005.

    Article  CAS  Google Scholar 

  75. Leroux T, Ogilvie-Harris D, Dwyer T, Chahal J, Gandhi R, Mahomed N, et al. The risk of knee arthroplasty following cruciate ligament reconstruction. J Bone Joint Surg. 2014;96(1):2–10. https://doi.org/10.2106/JBJS.M.00393.

    Article  PubMed  Google Scholar 

  76. Smith BE, Selfe J, Thacker D, Hendrick P, Bateman M, Moffatt F, Rathleff MS, Smith TO, Logan P Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis. PLoS One 2018;13(1):e0190892. doi:https://doi.org/10.1371/journal.pone.0190892.

  77. Foss KDB, Myer GD, Chen SS, Hewett TE. Expected prevalence from the differential diagnosis of anterior knee pain in adolescent female athletes during preparticipation screening. J Athl Train. 2012;47(5):519–24. https://doi.org/10.4085/1062-6050-47.5.01.

    Article  Google Scholar 

  78. Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports. 2010;20(5):725–30. https://doi.org/10.1111/j.1600-0838.2009.00996.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Horton MG, Hall TL. Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Physical therapy : journal of the American Physical Therapy Association. 1989;69(11):897–901. https://doi.org/10.1093/ptj/69.11.897.

    Article  CAS  Google Scholar 

  80. Haim A, Yaniv M, Dekel S, Amir H. Patellofemoral pain syndrome: validity of clinical and radiological features. Clin Orthop Relat Res. 2006;451:223–8. https://doi.org/10.1097/01.blo.0000229284.45485.6c.

    Article  PubMed  Google Scholar 

  81. Sheehan FT, Derasari A, Fine KM, Brindle TJ, Alter KE. Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain. Clin Orthop Relat Res. 2010;468(1):266–75. https://doi.org/10.1007/s11999-009-0880-0.

    Article  PubMed  Google Scholar 

  82. Souza RB, Draper CE, Fredericson M, Powers CM. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. The Journal of orthopaedic & sports physical therapy. 2010;40(5):277–85. https://doi.org/10.2519/jospt.2010.3215.

    Article  Google Scholar 

  83. Schmitz RJ, Shultz SJ, Nguyen A-D. Dynamic valgus alignment and functional strength in males and females during maturation. J Athl Train. 2009;44(1):26–32. https://doi.org/10.4085/1062-6050-44.1.26.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barton CJ, Lack S, Hemmings S, Tufail S, Morrissey D. The ‘best practice guide to conservative management of patellofemoral pain’: incorporating level 1 evidence with expert clinical reasoning. Br J Sports Med. 2015;49(14):923–34. https://doi.org/10.1136/bjsports-2014-093637.

    Article  PubMed  Google Scholar 

  85. Neal BS, Lack SD, Lankhorst NE, Raye A, Morrissey D, van Middelkoop M. Risk factors for patellofemoral pain: a systematic review and meta-analysis. Br J Sports Med. 2019;53(5):270–81. https://doi.org/10.1136/bjsports-2017-098890.

    Article  PubMed  Google Scholar 

  86. • Effects of core neuromuscular training on pain, balance, and functional performance in women with patellofemoral pain syndrome: a clinical trial. Motealleh, A. 2019. Randomized single-blind trial sample of 28 women with unilateral PFPS underwent either 4-week core neuromuscular training plus routine physical therapy or routine physical therapy alone. The group that did core training had improved pain, balance, and function performance after 4 weeks.

  87. Crossley KM, van Middelkoop M, Callaghan MJ, Collins NJ, Rathleff MS, Barton CJ. 2016 Patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 2: recommended physical interventions (exercise, taping, bracing, foot orthoses and combined interventions). Br J Sports Med 2016;50(14):844–852. doi:https://doi.org/10.1136/bjsports-2016-096268.

  88. Rathleff MS, Roos EM, Olesen JL, Rasmussen S. Exercise during school hours when added to patient education improves outcome for 2 years in adolescent patellofemoral pain: a cluster randomised trial. Br J Sports Med. 2015;49(6):406–12. https://doi.org/10.1136/bjsports-2014-093929.

    Article  PubMed  CAS  Google Scholar 

  89. Khayambashi K, Fallah A, Movahedi A, Bagwell J, Powers C. Posterolateral hip muscle strengthening versus quadriceps strengthening for patellofemoral pain: a comparative control trial. Arch Phys Med Rehabil. 2014;95(5):900–7. https://doi.org/10.1016/j.apmr.2013.12.022.

    Article  PubMed  Google Scholar 

  90. Ferber R, Bolgla L, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: a multicenter randomized controlled trial. J Athl Train. 2015;50(4):366–77. https://doi.org/10.4085/1062-6050-49.3.70.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tummala SV, Hartigan DE, Makovicka JL, Patel KA, Chhabra A. 10-year epidemiology of ankle injuries in men’s and women’s collegiate basketball. Orthopaedic journal of sports medicine. 2018;6(11):232596711880540. https://doi.org/10.1177/2325967118805400.

    Article  Google Scholar 

  92. Hunt KJ, Hurwit D, Robell K, Gatewood C, Botser IB, Matheson G. Incidence and epidemiology of foot and ankle injuries in elite collegiate athletes. Am J Sports Med. 2017;45(2):426–33. https://doi.org/10.1177/0363546516666815.

    Article  PubMed  Google Scholar 

  93. Janssen KW, van der Zwaard BC, Finch CF, van Mechelen W, Verhagen EALM. Interventions preventing ankle sprains; previous injury and high-risk sport participation as predictors of compliance. J Sci Med Sport. 2016;19(6):465–9. https://doi.org/10.1016/j.jsams.2015.06.005.

    Article  PubMed  Google Scholar 

  94. Roos KG, Kerr ZY, Mauntel TC, Djoko A, Dompier TP, Wikstrom EA. The epidemiology of lateral ligament complex ankle sprains in National Collegiate Athletic Association sports. Am J Sports Med. 2017;45(1):201–9. https://doi.org/10.1177/0363546516660980.

    Article  PubMed  Google Scholar 

  95. McCann RS, Kosik KB, Terada M, Beard MQ, Buskirk GE, Gribble PA. Acute lateral ankle sprain prediction in collegiate women’s soccer players. Int J Sports Phys Ther 2018;13(1):12–18.

  96. Delahunt E, Remus A. Risk factors for lateral ankle sprains and chronic ankle instability. J Athl Train. 2019;54(6):611–6. https://doi.org/10.4085/1062-6050-44-18.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tanen L, Docherty CL, Van Der Pol B, Simon J, Schrader J. Prevalence of chronic ankle instability in high school and division I athletes. Foot & ankle specialist. 2014;7(1):37–44. https://doi.org/10.1177/1938640013509670.

    Article  Google Scholar 

  98. • Delahunt E, Bleakley CM, Bossard DS, et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle ConsortiumBritish Journal of Sports Medicine 2018;52:1304–1310. International consensus to guide providers on history, physical exam, and diagnosis considerations of chronic lateral ankle instability.

  99. Herzog MM, Kerr ZY, Marshall SW, Wikstrom EA. Epidemiology of ankle sprains and chronic ankle instability. J Athl Train. 2019;54(6):603–10. https://doi.org/10.4085/1062-6050-447-17.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nguyen A-D, Shultz SJ. Sex differences in clinical measures of lower extremity alignment. The Journal of orthopaedic & sports physical therapy. 2007;37(7):389–98. https://doi.org/10.2519/jospt.2007.2487.

    Article  Google Scholar 

  101. Ericksen H, Gribble PA. Sex differences, hormone fluctuations, ankle stability, and dynamic postural control. J Athl Train. 2012;47(2):143–8. https://doi.org/10.4085/1062-6050-47.2.143.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sugimoto D, McCartney RE, Parisien RL, Dashe J, Borg DR, Meehan WP 3rd. Range of motion and ankle injury history association with sex in pediatric and adolescent athletes. Phys Sportsmed. 2018;46(1):24–9. https://doi.org/10.1080/00913847.2018.1413919.

    Article  PubMed  Google Scholar 

  103. Cl D. Postural control deficits in participants with functional ankle instability as measured by the balance error scoring system. Clin J Sport Med. 2006;16(3):203.

    Article  Google Scholar 

  104. Hoch MC, Staton GS, McKeon PO. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 2011;14(1):90–2. https://doi.org/10.1016/j.jsams.2010.08.001.

    Article  PubMed  Google Scholar 

  105. McCann RS, Crossett ID, Terada M, Kosik KB, Bolding BA, Gribble PA. Hip strength and star excursion balance test deficits of patients with chronic ankle instability. J Sci Med Sport. 2017;20(11):992–6. https://doi.org/10.1016/j.jsams.2017.05.005.

    Article  PubMed  Google Scholar 

  106. Grassi A, Alexiou K, Amendola A, Moorman CT, Samuelsson K, Ayeni OR, et al. Postural stability deficit could predict ankle sprains: a systematic review. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2018;26(10):3140–55. https://doi.org/10.1007/s00167-017-4818-x.

    Article  Google Scholar 

  107. Feger MA, Donovan L, Hart JM, Hertel J. Lower extremity muscle activation during functional exercises in patients with and without chronic ankle instability. Pm r. 2014;6(7):602–11; quiz 11. https://doi.org/10.1016/j.pmrj.2013.12.013.

    Article  PubMed  Google Scholar 

  108. Eils E, SchrÖTer R, SchrÖDer M, Gerss J, Rosenbaum D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med Sci Sports Exerc. 2010;42(11):2098–105. https://doi.org/10.1249/MSS.0b013e3181e03667.

    Article  PubMed  Google Scholar 

  109. Stasinopoulos D. Comparison of three preventive methods in order to reduce the incidence of ankle inversion sprains among female volleyball players. Br J Sports Med. 2004;38(2):182–5. https://doi.org/10.1136/bjsm.2002.003947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Janssen KW, van Mechelen W, Verhagen EALM. Bracing superior to neuromuscular training for the prevention of self-reported recurrent ankle sprains: a three-arm randomised controlled trial. Br J Sports Med. 2014;48(16):1235–9. https://doi.org/10.1136/bjsports-2013-092947.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandria Haselhorst.

Ethics declarations

Conflict of Interest

Alexandria Haselhorst and Monica Rho declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women’s Health Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haselhorst, A., Rho, M. Musculoskeletal Issues and Care Specific to the Female Athlete. Curr Phys Med Rehabil Rep 8, 249–259 (2020). https://doi.org/10.1007/s40141-020-00279-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00279-z

Keywords

Navigation