Skip to main content
Log in

The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury

  • Rehabilitation Technology (R Harvey, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on a relatively new neuromodulation method where transcranial magnetic stimulation over the primary motor cortex is paired with transcutaneous electrical stimulation over a peripheral nerve to induce plasticity at corticospinal-motoneuronal synapses.

Recent Findings

Recovery of sensorimotor function after spinal cord injury largely depends on transmission in the corticospinal pathway. Significantly damaged corticospinal axons fail to regenerate and participate in functional recovery. Transmission in residual corticospinal axons can be assessed using non-invasive transcranial magnetic stimulation which, when combined at the proper time with peripheral nerve electrical stimulation, can be used to improve voluntary motor output, as was recently demonstrated in clinical studies in humans with chronic incomplete spinal cord injury. These two stimuli are applied at precise inter-stimulus intervals to reinforce corticospinal synaptic transmission using principles of spike-timing-dependent plasticity.

Summary

We discuss the neural mechanisms and application of this neuromodulation technique and its potential therapeutic effect on the recovery of function in humans with chronic spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lawrence DG, Kuypers HG. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain. 1968;91(1):15–36.

    PubMed  CAS  Google Scholar 

  2. Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol. 1993;59:75–89.

    PubMed  CAS  Google Scholar 

  3. Kakulas A. The applied neurobiology of human spinal cord injury: a review. Paraplegia. 1988;26(6):371–9.

    PubMed  CAS  Google Scholar 

  4. Sangari S, et al. Residual descending motor pathways influence spasticity after spinal cord injury. Ann Neurol. 2019;86(1):28–41.

    PubMed  PubMed Central  Google Scholar 

  5. Dimitrijevic MR. Residual motor functions in spinal cord injury. Adv Neurol 1988;47:138–55.

  6. Heald E, Hart R, Kilgore K, Peckham PH. Characterization of Volitional Electromyographic Signals in the Lower Extremity After Motor Complete Spinal Cord Injury. Neurorehabil Neural Repair 2017;31(6):583–91.

  7. Sherwood AM, Dimitrijevic MR, McKay WB. Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. J Neurol Sci 1992;110(1-2):90-8.

  8. Bunday KL, Perez MA. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol. 2012;22(24):2355–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Bunday KL, Urbin MA, Perez MA. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury. Brain Stimul. 2018;11(5):1083–92.

    PubMed  Google Scholar 

  10. •• Jo HJ, Perez MA. Corticospinal-motoneuronal plasticity further promotes exercise-mediated recovery in humans with spinal cord injury. Brain. 2020. https://doi.org/10.1093/brain/awaa052This is a long-term study applying PCMS in humans with SCI. Participants who underwent 10 sessions of PCMS combined with exercise showed behavioral and physiological improvement that preserved for at least 6 months.

  11. Urbin MA, Ozdemir RA, Tazoe T, Perez MA. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury. J Neurophysiol. 2017;118(4):2171–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Benavides FD, Jo HJ, Lundell H, Edgerton VR, Gerasimenko Y, Perez MA. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J Neurosci. 2020;40:2633–43.

    PubMed  CAS  Google Scholar 

  13. Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24):1968–80.

    PubMed  PubMed Central  Google Scholar 

  14. Sayenko DG, Rath M, Ferguson AR, Burdick JW, Havton LA, Edgerton VR, et al. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J Neurotrauma. 2019;36(9):1435–50.

    PubMed  PubMed Central  Google Scholar 

  15. Thompson AK, Pomerantz FR, Wolpaw JR. Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci. 2013;33(6):2365–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Trumbower RD, Jayaraman A, Mitchell GS, Rymer WZ. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury. Neurorehabil Neural Repair. 2012;26(2):163–72.

    PubMed  Google Scholar 

  17. Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of spike-timing-dependent plasticity: past, present, and future. Neuron. 2019;103(4):563–81.

    PubMed  CAS  Google Scholar 

  18. Hebb DO. The organization of behavior; a neuropsychological theory. In: A Wiley book in clinical psychology, vol. xix. New York: Wiley; 1949. 335 p.

    Google Scholar 

  19. Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18(24):10464–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46.

    PubMed  CAS  Google Scholar 

  21. • Donges SC, et al. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans. J Neurophysiol. 2018;119(2):652–61 This study showed that the NMDA receptor antagonist suppressed plasticity induced by PCMS, suggesting that an NMDA receptor-dependent mechanism is involved in plasticity.

    PubMed  CAS  Google Scholar 

  22. Stefan K, et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–84.

    PubMed  Google Scholar 

  23. Kampa BM, Clements J, Jonas P, Stuart GJ. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol. 2004;556(Pt 2):337–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Comput Biol. 2010;6(2):e1000675.

    PubMed  PubMed Central  Google Scholar 

  25. Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron. 1992;9(5):967–75.

    PubMed  CAS  Google Scholar 

  26. Neveu D, Zucker RS. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron. 1996;16(3):619–29.

    PubMed  CAS  Google Scholar 

  27. Liu DD, Yang Q, Li ST. Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull. 2013;93:10–6.

    PubMed  CAS  Google Scholar 

  28. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol. 2003;89(5):2339–45.

    PubMed  Google Scholar 

  29. Foysal KMR, Baker SN. A hierarchy of corticospinal plasticity in human hand and forearm muscles. J Physiol. 2019;597(10):2729–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Ridding MC, Uy J. Changes in motor cortical excitability induced by paired associative stimulation. Clin Neurophysiol. 2003;114(8):1437–44.

    PubMed  CAS  Google Scholar 

  31. Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ. Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol. 2011;122(11):2254–9.

    PubMed  PubMed Central  Google Scholar 

  32. Leukel C, Taube W, Beck S, Schubert M. Pathway-specific plasticity in the human spinal cord. Eur J Neurosci. 2012;35(10):1622–9.

    PubMed  Google Scholar 

  33. Shulga A, Lioumis P, Kirveskari E, Savolainen S, Mäkelä JP, Ylinen A. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. J Neurosci Methods. 2015;242:112–7.

    PubMed  Google Scholar 

  34. Taylor JL, Martin PG. Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway. J Neurosci. 2009;29(37):11708–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Fitzpatrick SC, Luu BL, Butler JE, Taylor JL. More conditioning stimuli enhance synaptic plasticity in the human spinal cord. Clin Neurophysiol. 2016;127(1):724–31.

    PubMed  Google Scholar 

  36. Kasai T, Hayes KC, Wolfe DL, Allatt RD. Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects. Electroencephalogr Clin Neurophysiol. 1992;85(2):95–101.

    PubMed  CAS  Google Scholar 

  37. Roy FD, Gorassini MA. Peripheral sensory activation of cortical circuits in the leg motor cortex of man. J Physiol. 2008;586(17):4091–105.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Roy FD, Yang JF, Gorassini MA. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury. J Neurophysiol. 2010;103(4):2222–33.

    PubMed  Google Scholar 

  39. Zewdie ET, Roy FD, Okuma Y, Yang JF, Gorassini MA. Long-latency, inhibitory spinal pathway to ankle flexors activated by homonymous group 1 afferents. J Neurophysiol. 2014;111(12):2544–53.

    PubMed  Google Scholar 

  40. Simonetta-Moreau M, Marque P, Marchand-Pauvert V, Pierrot-Deseilligny E. The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents. J Physiol. 1999;517(Pt 1):287–300.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. D’Amico JM, Donges SC, Taylor JL. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis. J Neurophysiol. 2018;119(1):369–76.

    PubMed  Google Scholar 

  42. Vastano R, Perez MA. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury. J Neurophysiol. 2020;123(2):454–61.

    PubMed  Google Scholar 

  43. Behrman AL, Ardolino EM, Harkema SJ. Activity-based therapy: from basic science to clinical application for recovery after spinal cord injury. J Neurol Phys Ther. 2017;41(Suppl 3):S39–45.

    PubMed  PubMed Central  Google Scholar 

  44. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10):1333–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677–82.

    PubMed  CAS  Google Scholar 

  46. Chen LW, Glinsky JV, Islam MS, Hossain M, Boswell-Ruys CL, Kataria C, et al. The effects of 10,000 voluntary contractions over 8 weeks on the strength of very weak muscles in people with spinal cord injury: a randomised controlled trial. Spinal Cord. 2020. https://doi.org/10.1038/s41393-020-0439-1.

  47. • Donges SC, et al. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study. Spinal Cord. 2019;57(9):796–804. This study demonstrated that PCMS comprised 100 pairs could not enhance maximal voluntary elbow flexion in people with cervical spinal cord injury.

  48. Christiansen L, Urbin MA, Mitchell GS, Perez MA. Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans. Elife. 2018;7:e34304. https://doi.org/10.7554/eLife.34304.

  49. Christiansen LY, Lei C, Bing, Urbin MA, Sandhu M, Rymer GS, Mitchell GS, Perez MA. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia. In Preparation.

  50. Bradford A, McGuire M, O’Halloran KD. Does episodic hypoxia affect upper airway dilator muscle function? Implications for the pathophysiology of obstructive sleep apnoea. Respir Physiol Neurobiol. 2005;147(2–3):223–34.

    PubMed  Google Scholar 

  51. Fuller DD, Fregosi RF. Fatiguing contractions of tongue protrudor and retractor muscles: influence of systemic hypoxia. J Appl Physiol (1985). 2000;88(6):2123–30.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica A. Perez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rehabilitation Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, H.J., Richardson, M.S., Oudega, M. et al. The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury. Curr Phys Med Rehabil Rep 8, 293–298 (2020). https://doi.org/10.1007/s40141-020-00272-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00272-6

Keywords

Navigation