Skip to main content

Advertisement

Log in

Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells

  • Application of Stem Cells in Endoderm Derivatives (K Si-Tayeb and G Sullivan, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

The purpose of this review is to provide an updated perspective on directing human pluripotent stem cells (hPSCs) to hepatocyte-like-cells (HLCs) and the associated challenges.

Recent Findings

Recent advances in the hepatocyte differentiation field have largely been focused on increasing the reproducibility and definition of culture systems to further their translation to a clinical setting. There have been advances using new extracellular matrices such as human laminins, and recent work using small molecules to drive the differentiation process has dramatically reduced the cost of producing HLCs with equivalent phenotypes to growth factor-derived cells.

Summary

There are still several key aspects that remain unresolved, including the immature phenotype of hPSC-derived HLCs (a major hurdle for hPSC-derived progeny). Another key question is the zonal identity of the HLCs produced in vitro, which will have major implications in terms of disease modeling and drug metabolism. To date, there has been little investigation of this aspect of hepatic biology reported in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Taylor J, Wilmut I, Sullivan G. What are the limits to cell plasticity? Cell Res. 2010;20:502–3. doi:10.1038/cr.2010.59.

    Article  PubMed  Google Scholar 

  2. Schwartz SD, Hubschman J-P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20. doi:10.1016/S0140-6736(12)60028-2.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2014;385:509–16. doi:10.1016/S0140-6736(14)61376-3.

    Article  PubMed  Google Scholar 

  4. Turner M, Leslie S, Martin NG, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13:382–4. doi:10.1016/j.stem.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  5. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200. doi:10.1038/nrm.2016.10.

    Article  CAS  PubMed  Google Scholar 

  6. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6. doi:10.1038/292154a0.

    Article  CAS  PubMed  Google Scholar 

  7. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7. doi:10.1126/science.282.5391.1145.

    Article  CAS  PubMed  Google Scholar 

  9. Knoppers B, Isasi R. Mind the gap: policy approaches to embryonic stem cell and cloning research in 50 countries. Eur J Health Law. 2006;13:9–25. doi:10.1163/157180906777036328.

    Article  PubMed  Google Scholar 

  10. Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848–57. doi:10.1073/pnas.1200250109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lian X, Zhang J, Azarin SM, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162–75. doi:10.1038/nprot.2012.150.

    Article  CAS  PubMed  Google Scholar 

  12. Burridge PW, Matsa E, Shukla P, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. doi:10.1038/nmeth.2999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toivonen S, Ojala M, Hyysalo A, et al. Comparative analysis of targeted differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Transl Med. 2013;2:83–93. doi:10.5966/sctm.2012-0047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80. doi:10.1038/nbt.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159:428–39. doi:10.1016/j.cell.2014.09.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hay DC, Fletcher J, Payne C, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci U S A. 2008;105:12301–6. doi:10.1073/pnas.0806522105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Sullivan GJ, Hay DC, Park I-H, et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010;51:329–35. doi:10.1002/hep.23335. This work from Sullivan and colleagues represents the first instance of hepatocyte-like cells derived from human-induced pluripotent stem cells, and importantly from ethnically diverse backgrounds, opening the possibilities to study drug metabolism in a wide spectrum of the human population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hay DC, Zhao D, Fletcher J, et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells. 2008;26:894–902. doi:10.1634/stemcells.2007-0718.

    Article  CAS  PubMed  Google Scholar 

  19. • Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305. doi:10.1002/hep.23354. This paper demonstrated for the first time that human-induced pluripotent stem cells could be efficiently differentiated to hepatocyte-like-cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song Z, Cai J, Liu Y, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009;19:1233–42. doi:10.1038/cr.2009.107.

    Article  PubMed  Google Scholar 

  21. Touboul T, Hannan NRF, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51:1754–65. doi:10.1002/hep.23506.

    Article  CAS  PubMed  Google Scholar 

  22. Hannan NRF, Segeritz C-P, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 2013;8:430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Rep. 2015;4:939–52. doi:10.1016/j.stemcr.2015.04.001.

    Article  CAS  Google Scholar 

  24. • Siller R, Naumovska E, Mathapati S, et al. Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Sci Rep. 2016;6:37178. doi:10.1038/srep37178. This work demonstrated the first report of a small molecule-driven, growth factor-free approach to generate hPSC-derived hepatocyte-like cells, representing a significant (10-fold) reduction in the cost compared to growth factor-based approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mathapati S, Siller R, Impellizzeri AAR, et al (2016) Small-molecule-directed hepatocyte-like cell differentiation of human pluripotent stem cells. In: Curr. Protoc. Stem Cell Biol. Wiley., Hoboken, p 1G.6.1-1G.6.18.

  26. de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod. 2003;18:672–82. doi:10.1093/HUMREP/DEG143.

    Article  PubMed  Google Scholar 

  27. Brivanlou AH, Gage FH, Jaenisch R, et al. Setting standards for human embryonic stem cells. Science. 2003;300:913–6. doi:10.1126/science.1082940.

    Article  CAS  PubMed  Google Scholar 

  28. Robertson JA. Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet. 2001;2:74–8. doi:10.1038/35047594.

    Article  CAS  PubMed  Google Scholar 

  29. Daley GQ, Richter LA, Auerbach JM, et al. ETHICS: the ISSCR guidelines for human embryonic stem cell research. Science. 2007;315:603–4. doi:10.1126/science.1139337.

    Article  CAS  PubMed  Google Scholar 

  30. Kastenberg ZJ, Odorico JS. Alternative sources of pluripotency: science, ethics, and stem cells. Transplant Rev. 2008;22:215–22. doi:10.1016/j.trre.2008.04.002.

    Article  Google Scholar 

  31. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A. 1952;38:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elsdale TR, Gurdon JB, Fischberg M. A description of the technique for nuclear transplantation in Xenopus laevis. J Embryol Exp Morpholog. 1960;8:437–44.

    CAS  Google Scholar 

  33. Gurdon JB. Factors responsible for the abnormal development of embryos obtained by nuclear transplantation in Xenopus laevis. J Embryol Exp Morpholog. 1960;8:327–40.

    CAS  Google Scholar 

  34. • Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000. This is the first report on the use of expression of a master regulator gene to drive cellular reprogramming and fate change, which laid the ground work for the subsequent work of Yamanaka.

    Article  CAS  PubMed  Google Scholar 

  35. Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3. doi:10.1038/385810a0.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  37. • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. doi:10.1016/j.cell.2007.11.019. This work by Takahashi and colleagues demonstrated for the first time that the protocol for generating induced pluripotent stem cells could be applied to human somatic cells.

    Article  CAS  PubMed  Google Scholar 

  38. • Park I-H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–86. doi:10.1016/j.cell.2008.07.041. In this work by Park and colleagues, they showed the first instances of induced pluripotent stem cells derived from patients carrying disease causing mutations and thus established the first iPSC-based disease models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. doi:10.1126/science.1151526. In this seminal work, Yu and colleagues demonstrated that KLF4 and c-MYC could be replaced by LIN28 and NANOG in the reprogramming mix to efficiently derive human-induced pluripotent stem cells.

    Article  CAS  PubMed  Google Scholar 

  40. Siller R, Greenhough S, In-Hyun P, Sullivan G. Modelling human disease with pluripotent stem cells. Curr Gene Ther. 2013;13:99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4. doi:10.1016/j.stem.2009.04.005.

    Article  CAS  PubMed  Google Scholar 

  42. Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30. doi:10.1016/j.stem.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12. doi:10.1038/nmeth.1591.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao T, Zhang Z-N, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5. doi:10.1038/nature10135.

    Article  CAS  PubMed  Google Scholar 

  46. Guha P, Morgan J, Mostoslavsky G, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12. doi:10.1016/j.stem.2013.01.006.

    Article  CAS  PubMed  Google Scholar 

  47. Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100–4. doi:10.1038/nature11807.

    Article  CAS  PubMed  Google Scholar 

  48. Ware BR, Berger DR, Khetani SR. Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci. 2015;145:252–62. doi:10.1093/toxsci/kfv048.

    Article  CAS  PubMed  Google Scholar 

  49. Guguen-Guillouzo C, Guillouzo A. General review on in vitro hepatocyte models and their applications. Methods Mol Biol. 2010;640:1–40. doi:10.1007/978-1-60761-688-7_1.

    Article  CAS  PubMed  Google Scholar 

  50. Gramignoli R, Tahan V, Dorko K, et al. New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. Stem Cell Res. 2013;11:563–73. doi:10.1016/j.scr.2013.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu C, Li AP. Species comparison in P450 induction: effects of dexamethasone, omeprazole, and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man, Sprague-Dawley rat, minipig, and beagle dog. Chem Biol Interact. 2001;134:271–81.

    Article  CAS  PubMed  Google Scholar 

  52. Zorn AM (2008) Liver development. StemBook. doi:10.3824/STEMBOOK.1.25.1.

  53. Teo AKK, Ali Y, Wong KY, et al. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells. 2012;30:631–42. doi:10.1002/stem.1022.

    Article  CAS  PubMed  Google Scholar 

  54. Jones EA, Clement-Jones M, James OF, Wilson DI. Differences between human and mouse alpha-fetoprotein expression during early development. J Anat. 2001;198:555–9. doi:10.1046/j.1469-7580.2001.19850555.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125:4909–17.

    CAS  PubMed  Google Scholar 

  56. Lokmane L, Haumaitre C, Garcia-Villalba P, et al. Crucial role of vHNF1 in vertebrate hepatic specification. Development. 2008;135:2777–86. doi:10.1242/dev.023010.

    Article  CAS  PubMed  Google Scholar 

  57. McPherson CE, Shim E-Y, Friedman DS, Zaret KS. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 1993;75:387–98. doi:10.1016/0092-8674(93)80079-T.

    Article  CAS  PubMed  Google Scholar 

  58. Chaya D, Hayamizu T, Bustin M, Zaret KS. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J Biol Chem. 2001;276:44385–9. doi:10.1074/jbc.M108214200.

    Article  CAS  PubMed  Google Scholar 

  59. Cirillo LA, Lin FR, Cuesta I, et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 2002;9:279–89.

    Article  CAS  PubMed  Google Scholar 

  60. Buurman R, Gürlevik E, Schäffer V, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. Gastroenterology. 2012;143:811–820.e15. doi:10.1053/j.gastro.2012.05.033.

    Article  CAS  PubMed  Google Scholar 

  61. Bhattacharyya S, Tian J, Bouhassira EE, Locker J. Systematic targeted integration to study albumin gene control elements. PLoS One. 2011;6:e23234. doi:10.1371/journal.pone.0023234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calmont A, Wandzioch E, Tremblay KD, et al. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell. 2006;11:339–48. doi:10.1016/j.devcel.2006.06.015.

    Article  CAS  PubMed  Google Scholar 

  63. Twaroski K, Mallanna SK, Jing R, et al. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1. Genes Dev. 2015;29:2463–74. doi:10.1101/gad.268961.115.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294:559–63. doi:10.1126/science.1063889.

    Article  CAS  PubMed  Google Scholar 

  65. Margagliotti S, Clotman F, Pierreux CE, et al. Role of metalloproteinases at the onset of liver development. Develop Growth Differ. 2008;50:331–8. doi:10.1111/j.1440-169X.2008.01031.x.

    Article  CAS  Google Scholar 

  66. Sosa-pineda B, Wigle JT. Hepatocyte migration during liver development requires Prox1. Nat Genet. 2000;25:254–5.

    Article  CAS  PubMed  Google Scholar 

  67. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89. doi:10.1016/j.devcel.2010.01.011.

    Article  CAS  PubMed  Google Scholar 

  68. Jochheim A, Hillemann T, Kania G, et al. Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int J Dev Biol. 2004;48:23–9. doi:10.1387/IJDB.15005571.

    Article  CAS  PubMed  Google Scholar 

  69. Kelley-Loughnane N, Sabla GE, Ley-Ebert C, et al. Independent and overlapping transcriptional activation during liver development and regeneration in mice. Hepatology. 2002;35:525–34. doi:10.1053/jhep.2002.31351.

    Article  CAS  PubMed  Google Scholar 

  70. Petkov PM, Zavadil J, Goetz D, et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology. 2004;39:617–27. doi:10.1002/hep.20088.

    Article  CAS  PubMed  Google Scholar 

  71. Kyrmizi I, Hatzis P, Katrakili N, et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 2006;20:2293–305. doi:10.1101/gad.390906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui W, Sun M, Galeva N, et al. SUMOylation and ubiquitylation circuitry controls pregnane X receptor biology in hepatocytes. Drug Metab Dispos. 2015;43:1316–25. doi:10.1124/dmd.115.065201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Imamura T, Cui L, Teng R, et al. Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo. Tissue Eng. 10:1716–24. doi:10.1089/ten.2004.10.1716.

  74. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006;50:645–52. doi:10.1387/ijdb.052072hb.

    Article  CAS  PubMed  Google Scholar 

  75. Basma H, Soto-Gutiérrez A, Yannam GR, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9. doi:10.1053/j.gastro.2008.10.047.

    Article  CAS  PubMed  Google Scholar 

  76. Rambhatla L, Chiu C-P, Kundu P, et al. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 2003;12:1–11.

    Article  PubMed  Google Scholar 

  77. Hay DC, Zhao D, Ross A, et al. Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells. 2007;9:51–62. doi:10.1089/clo.2006.0045.

    Article  CAS  PubMed  Google Scholar 

  78. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41. doi:10.1038/nbt1163.

    Article  PubMed  CAS  Google Scholar 

  79. Cai J, Zhao Y, Liu Y, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39. doi:10.1002/hep.21582.

    Article  CAS  PubMed  Google Scholar 

  80. Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells. 2008;26:1117–27. doi:10.1634/stemcells.2007-1102.

    Article  CAS  PubMed  Google Scholar 

  81. Brolén G, Sivertsson L, Björquist P, et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol. 2010;145:284–94. doi:10.1016/j.jbiotec.2009.11.007.

    Article  PubMed  CAS  Google Scholar 

  82. Vallier L, Reynolds D, Pedersen RA. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol. 2004;275:403–21. doi:10.1016/j.ydbio.2004.08.031.

    Article  CAS  PubMed  Google Scholar 

  83. Conlon F, Lyons K, Takaesu N, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120:1919–28.

    CAS  PubMed  Google Scholar 

  84. Zhou X, Sasaki H, Lowe L, et al. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature. 1993;361:543–7. doi:10.1038/361543a0.

    Article  CAS  PubMed  Google Scholar 

  85. Jones C, Kuehn M, Hogan B, et al. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development. 1995;121:3651–62.

    CAS  PubMed  Google Scholar 

  86. Feldman B, Gates MA, Egan ES, et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature. 1998;395:181–5. doi:10.1038/26013.

    Article  CAS  PubMed  Google Scholar 

  87. Engert S, Burtscher I, Liao WP, et al. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development. 2013;140:3128–38. doi:10.1242/dev.088765.

    Article  CAS  PubMed  Google Scholar 

  88. Loh KM, Ang LT, Zhang J, et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell. 2014;14:237–52. doi:10.1016/j.stem.2013.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borowiak M, Maehr R, Chen S, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009;4:348–58. doi:10.1016/j.stem.2009.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tahamtani Y, Azarnia M, Farrokhi A, et al. Stauprimide priming of human embryonic stem cells toward definitive endoderm. Cell J. 2014;16:63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vallier L, Touboul T, Chng Z, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One. 2009;4:e6082. doi:10.1371/journal.pone.0006082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vallier L, Touboul T, Brown S, et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells. 2009;27:2655–66. doi:10.1002/stem.199.

    Article  CAS  PubMed  Google Scholar 

  93. Tahamtani Y, Azarnia M, Farrokhi A, et al. Treatment of human embryonic stem cells with different combinations of priming and inducing factors toward definitive endoderm. Stem Cells Dev. 2013;22:1419–32. doi:10.1089/scd.2012.0453.

    Article  CAS  PubMed  Google Scholar 

  94. Zhou J, Su P, Wang L, et al. mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci. 2009;106:7840–5. doi:10.1073/pnas.0901854106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ninomiya H, Mizuno K, Terada R, et al. Improved efficiency of definitive endoderm induction from human induced pluripotent stem cells in feeder and serum-free culture system. In Vitro Cell Dev Biol Anim. 2015;51:1–8. doi:10.1007/s11626-014-9801-y.

    Article  PubMed  Google Scholar 

  96. Chetty S, Pagliuca FW, Honore C, et al. A simple tool to improve pluripotent stem cell differentiation. Nat Methods. 2013;10:553–6. doi:10.1038/nmeth.2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Czysz K, Minger S, Thomas N. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS One. 2015;10:e0117689. doi:10.1371/journal.pone.0117689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Maldonado M, Luu RJ, Ramos MEP, Nam J. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation. Stem Cell Res. 2016; doi:10.1016/j.scr.2016.07.009.

  99. Kondo Y, Iwao T, Yoshihashi S, et al. Histone deacetylase inhibitor valproic acid promotes the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. PLoS One. 2014;9:e104010. doi:10.1371/journal.pone.0104010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Touboul T, Chen S, To CC, et al. Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes. J Hepatol. 2016;64:1315–26. doi:10.1016/j.jhep.2016.02.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tasnim F, Phan D, Toh Y-C, Yu H. Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials. 2015;70:115–25. doi:10.1016/j.biomaterials.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  102. Brown S, Teo A, Pauklin S, et al. Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells. 2011;29:1176–85. doi:10.1002/stem.666.

    Article  CAS  PubMed  Google Scholar 

  103. Pauklin S, Vallier L. Activin/Nodal signalling in stem cells. Development. 2015;142:607–19. doi:10.1242/dev.091769.

    Article  CAS  PubMed  Google Scholar 

  104. Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, et al. Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated nonwoven polytetrafluoroethylene fabric. Cell Transplant. 2006;15:335–41.

    Article  PubMed  Google Scholar 

  105. Leiter JM, Helliger W, Puschendorf B. Increase in histone acetylation and transitions in histone variants during friend cell differentiation. Exp Cell Res. 1984;155:222–31.

    Article  CAS  PubMed  Google Scholar 

  106. McCoy AT, Benoist CC, Wright JW, et al. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J Pharmacol Exp Ther. 2013;344:141–54. doi:10.1124/jpet.112.199497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. • Baxter M, Withey S, Harrison S, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9. doi:10.1016/j.jhep.2014.10.016. This paper from Baxter and colleagues establishes the critical aspects which should be addressed and assessed for all hPSC-derived hepatocyte-like ells in terms of maturity and function, thus providing a benchmark for which all subsequent reports should strive towards.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Patterson M, Chan DN, Ha I, et al. Defining the nature of human pluripotent stem cell progeny. Cell Res. 2012;22:178–93. doi:10.1038/cr.2011.133.

    Article  CAS  PubMed  Google Scholar 

  109. Shan J, Schwartz RE, Ross NT, et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol. 2013;9:514–20. doi:10.1038/nchembio.1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. • Avior Y, Levy G, Zimerman M, et al. Microbial-derived lithocholic acid and vitamin K 2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes. Hepatology. 2015;62:265–78. doi:10.1002/hep.27803. In this paper, Avior and colleagues demonstrated the maturation of hPSC-derived hepatocyte-like cells by using a combination of lithocholic acid and vitamin K, based on an analysis of postpartum changes in the environment of the developing liver.

    Article  CAS  PubMed  Google Scholar 

  111. Sun J, Mustafi R, Cerda S, et al. Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol. 2008;111:37–40. doi:10.1016/j.jsbmb.2008.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cavin LG, Venkatraman M, Factor VM, et al. Regulation of -fetoprotein by nuclear factor- B protects hepatocytes from tumor necrosis factor- cytotoxicity during fetal liver development and hepatic oncogenesis. Cancer Res. 2004;64:7030–8. doi:10.1158/0008-5472.CAN-04-1647.

    Article  CAS  PubMed  Google Scholar 

  113. Zordoky BNM, El-Kadi AOS. Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr Drug Metab. 2008;9:122–8.

    Article  CAS  PubMed  Google Scholar 

  114. Ogawa S, Surapisitchat J, Virtanen C, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development. 2013;140:3285–96. doi:10.1242/dev.090266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakamori D, Takayama K, Nagamoto Y, et al. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction. Biochem Biophys Res Commun. 2016; doi:10.1016/j.bbrc.2015.12.007.

  116. Gieseck RL III, Hannan NRF, Bort R, et al. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One. 2014;9:e86372. doi:10.1371/journal.pone.0086372.

    Article  PubMed  CAS  Google Scholar 

  117. • Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4. doi:10.1038/nature12271. In this ground-breaking work from Takebe and colleagues, the generated functional liver buds through the combination of mesenchymal cells, endothelial cells, and hPSC-derived hepatic endoderm, which were highly functional and could efficiently engraft and be vascularized by a host mouse.

    Article  CAS  PubMed  Google Scholar 

  118. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322:1490–4. doi:10.1126/science.1161431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Asai A, Aihara E, Watson C, et al. Paracrine signals regulate human liver organoid maturation from iPSC. Development. 2017;144:142794. doi:10.1242/dev.142794.

    Article  CAS  Google Scholar 

  120. Huang P, Zhang L, Gao Y, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14:370–84. doi:10.1016/j.stem.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  121. Du Y, Wang J, Jia J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14:394–403. doi:10.1016/j.stem.2014.01.008.

    Article  CAS  PubMed  Google Scholar 

  122. Huang P, He Z, Ji S, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475:386–9. doi:10.1038/nature10116.

    Article  CAS  PubMed  Google Scholar 

  123. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475:390–3. doi:10.1038/nature10263.

    Article  CAS  PubMed  Google Scholar 

  124. Cameron K, Tan R, Schmidt-Heck W, et al. Recombinant laminins drive the differentiation and self-organization of hESC-derived hepatocytes. Stem Cell Rep. 2015;5:1250–62. doi:10.1016/j.stemcr.2015.10.016.

    Article  CAS  Google Scholar 

  125. Iredale JP, Arthur MJ. Hepatocyte-matrix interactions. Gut. 1994;35:729–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89. doi:10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  127. Dalby MJ, Biggs MJP, Gadegaard N, et al. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem. 2007;100:326–38. doi:10.1002/jcb.21058.

    Article  CAS  PubMed  Google Scholar 

  128. Tung Y-C, Hsiao AY, Allen SG, et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136:473–8. doi:10.1039/C0AN00609B.

    Article  CAS  PubMed  Google Scholar 

  129. Kempf H, Olmer R, Haase A, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602. doi:10.1038/ncomms13602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zweigerdt R, Olmer R, Singh H, et al. Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc. 2011;6:689–700. doi:10.1038/nprot.2011.318.

    Article  CAS  PubMed  Google Scholar 

  131. Kempf H, Kropp C, Olmer R, et al. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc. 2015;10:1345–61. doi:10.1038/nprot.2015.089.

    Article  CAS  PubMed  Google Scholar 

  132. Kempf H, Olmer R, Kropp C, et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 2014;3:1132–46. doi:10.1016/j.stemcr.2014.09.017.

    Article  CAS  Google Scholar 

  133. Olmer R, Lange A, Selzer S, et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods. 2012;18:772–84. doi:10.1089/ten.TEC.2011.0717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Paull D, Sevilla A, Zhou H, et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods. 2015;12:885–92. doi:10.1038/nmeth.3507.

    Article  CAS  PubMed  Google Scholar 

  135. Chen KG, Mallon BS, McKay RDG, Robey PG. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 2014;14:13–26. doi:10.1016/j.stem.2013.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Imaizumi K, Sone T, Ibata K, et al. Controlling the regional identity of hPSC-derived neurons to uncover neuronal subtype specificity of neurological disease phenotypes. Stem Cell Rep. 2015;5:1010–22. doi:10.1016/j.stemcr.2015.10.005.

    Article  Google Scholar 

  137. Denning C, Borgdorff V, Crutchley J, et al. Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta Mol Cell Res. 2016;1863:1728–48. doi:10.1016/j.bbamcr.2015.10.014.

    Article  CAS  Google Scholar 

  138. Colnot S, Perret C. Liver zonation. US: Springer; 2011. p. 7–16.

    Google Scholar 

  139. Gebhardt R, Matz-Soja M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol. 2014;20:8491–504. doi:10.3748/wjg.v20.i26.8491.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Orloff J, Douglas F, Pinheiro J, et al. The future of drug development: advancing clinical trial design. Nat Rev Drug Discov. 2009;8:949. doi:10.1038/nrd3025.

    CAS  PubMed  Google Scholar 

  141. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349:474–85. doi:10.1056/NEJMra021844.

    Article  CAS  PubMed  Google Scholar 

  142. Kimbrel EA, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov. 2015;14:681–92. doi:10.1038/nrd4738.

    Article  CAS  PubMed  Google Scholar 

  143. Sharma R, Greenhough S, Medine CN, Hay DC. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol. 2010;2010:236147. doi:10.1155/2010/236147.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Carina Knudsen at the University of Oslo Photo and Graphics Service for the illustration in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karim Si-Tayeb or Gareth J. Sullivan.

Ethics declarations

Conflict of Interest

Richard Siller, Santosh Mathapati, and Karim Si-Tayeb declare that they have no conflict of interest.

Gareth J Sullivan is named as an inventor on a provisional application for a patent describing the small molecule-driven hepatocyte differentiation of human pluripotent stem cells.

Sebastian Greenhough is named as an inventor on a provisional application for a patent describing the small molecule-driven hepatocyte differentiation of human pluripotent stem cells.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Application of Stem Cells in Endoderm Derivatives

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siller, R., Greenhough, S., Mathapati, S. et al. Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. Curr Pathobiol Rep 5, 301–314 (2017). https://doi.org/10.1007/s40139-017-0150-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0150-x

Keywords

Navigation