Skip to main content

Advertisement

Log in

The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies

  • Xenopus as a Model for Pathobiology (Aaron Zorn, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Over the past two decades or so, our understanding of gene function has come primarily from animal model organisms. In cases, when human disease alleles were found in developmental key genes, the translational aspect was deduced from the experimental animal model data. With the rapid improvement of sequencing technologies and data processing, we envisage that rare genetic disease alleles will be identified quickly and easily. As a consequence, experiments in animal models will be necessary to elucidate disease mechanisms, resulting in a workflow from the disease allele to experimentation in animal models. The Xenopus embryo is particularly qualified for this scenario. Knockdown of single or multiple gene functions, easy epistatic experimental setups as well as phenotypic readouts within a few days are only some of the advantages that the frog has to offer. In this review, we describe how the experimental advantages of the frog Xenopus have helped to unravel the function of a specific class of disease genes resulting in ciliopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Anderson KV, Ingham PW (2003) The transformation of the model organism: a decade of developmental genetics. Nat Genet 33(Suppl):285–293. doi:10.1038/ng1105

    Article  CAS  PubMed  Google Scholar 

  2. Ke Y-N, Yang W-X (2014) Primary cilium: an elaborate structure that blocks cell division? Gene 547:175–185. doi:10.1016/j.gene.2014.06.050

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234. doi:10.1038/nrm3085

    Article  CAS  PubMed  Google Scholar 

  4. Smith EF, Lefebvre PA (1997) The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil Cytoskeleton 38:1–8. doi:10.1002/(SICI)1097-0169(1997)38:1<1:AID-CM1>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  5. Blum M, Feistel K, Thumberger T, Schweickert A (2014) The evolution and conservation of left-right patterning mechanisms. Development 141:1603–1613. doi:10.1242/dev.100560

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825. doi:10.1038/nrm952

    Article  CAS  PubMed  Google Scholar 

  7. Choksi SP, Lauter G, Swoboda P, Roy S (2014) Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141:1427–1441. doi:10.1242/dev.074666

    Article  CAS  PubMed  Google Scholar 

  8. Yu X, Ng CP, Habacher H, Roy S (2008) Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 40:1445–1453. doi:10.1038/ng.263

    Article  CAS  PubMed  Google Scholar 

  9. Boon M, Wallmeier J, Ma L et al (2014) MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 5:1–8. doi:10.1038/ncomms5418

    Article  Google Scholar 

  10. Tan FE, Vladar EK, Ma L et al (2013) Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 140:4277–4286. doi:10.1242/dev.094102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Stubbs JL, Vladar EK, Axelrod JD, Kintner C (2012) Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol 14:140–147. doi:10.1038/ncb2406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893. doi:10.1038/nrm2278

    Article  CAS  PubMed  Google Scholar 

  13. Bettencourt-Dias M, Hildebrandt F, Pellman D et al (2011) Centrosomes and cilia in human disease. Trends Genet 27:307–315. doi:10.1016/j.tig.2011.05.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lancaster MA, Gleeson JG (2009) The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev 19:220–229. doi:10.1016/j.gde.2009.04.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kenny TD, Beales PL (2013) Ciliopathies: a reference for clinicians. OUP Oxford, Oxford

    Book  Google Scholar 

  16. Wheway G, Parry DA, Johnson CA (2013) The role of primary cilia in the development and disease of the retina. Organogenesis 10:69–85. doi:10.4161/org.26710

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mok CA, Héon E, Zhen M (2010) Ciliary dysfunction and obesity. Clin Genet 77:18–27. doi:10.1111/j.1399-0004.2009.01305.x

    Article  CAS  PubMed  Google Scholar 

  18. Gunay-Aygun M (2009) Liver and kidney disease in ciliopathies. American journal of medical genetics Part C, Seminars in medical genetics 151C:296–306. doi:10.1002/ajmg.c.30225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Valente EM, Rosti RO, Gibbs E, Gleeson JG (2014) Primary cilia in neurodevelopmental disorders. Nat Rev Neurol 10:27–36. doi:10.1038/nrneurol.2013.247

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sattar S, Gleeson JG (2011) The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol 53:793–798. doi:10.1111/j.1469-8749.2011.04021.x

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bergmann C (2012) Educational paper : ciliopathies. Eur J Pediatr 171:1285–1300. doi:10.1007/s00431-011-1553-z

    Article  PubMed Central  PubMed  Google Scholar 

  22. Moody SA, Kline MJ (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat Embryol 182:347–362

    Article  CAS  PubMed  Google Scholar 

  23. Blitz IL, Biesinger J, Xie X, Cho KWY (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51:827–834. doi:10.1002/dvg.22719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nakayama T, Fish MB, Fisher M et al (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843. doi:10.1002/dvg.22720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164. doi:10.1016/j.ydbio.2007.04.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wessely O, Obara T (2008) Fish and frogs: models for vertebrate cilia signaling. Front Biosci 13:1866–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wessely O, Tran U (2011) Xenopus pronephros development—past, present, and future. Pediatr Nephrol 26:1545–1551. doi:10.1007/s00467-011-1881-2

    Article  PubMed Central  PubMed  Google Scholar 

  28. McManus CI (2002) Right hand, left hand: the origins of asymmetry in brains, bodies. Atoms Cultures, BCA

    Google Scholar 

  29. Sutherland MJ, Ware SM (2009) Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet Part C Sem Med Genet 151C:307–317. doi:10.1002/ajmg.c.30228

    Article  CAS  Google Scholar 

  30. Oh EC, Katsanis N (2012) Cilia in vertebrate development and disease. Development 139:443–448. doi:10.1242/dev.050054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Norris DP, Grimes DT (2012) Developmental biology. Cilia discern left from right. Science 338:206–207. doi:10.1126/science.1230401

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Tobita K, Francis RJB, Lo CW (2013) Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. Birth Defects Res C Embryo Today 99:93–105. doi:10.1002/bdrc.21037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nonaka S, Tanaka Y, Okada Y et al (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  CAS  PubMed  Google Scholar 

  34. Afzelius BA (2004) Cilia-related diseases. J Pathol 204:470–477. doi:10.1002/path.1652

    Article  CAS  PubMed  Google Scholar 

  35. Bartoloni L, Blouin J-L, Pan Y et al (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99:10282–10286. doi:10.1073/pnas.152337699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Blum M, Andre P, Muders K et al (2007) Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 75:133–146. doi:10.1111/j.1432-0436.2006.00124.x

    Article  CAS  PubMed  Google Scholar 

  37. Schweickert A, Walentek P, Thumberger T, Danilchik M (2012) Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation S67:S83–77. doi:10.1016/j.diff.2011.11.005

    Google Scholar 

  38. Hirokawa N, Tanaka Y, Okada Y (2009) Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb Perspect Biol 1:a000802. doi:10.1101/cshperspect.a000802

    Article  PubMed Central  PubMed  Google Scholar 

  39. Santos N, Reiter JF (2010) Tilting at nodal windmills: planar cell polarity positions cilia to tell left from right. Dev Cell 19:5–6. doi:10.1016/j.devcel.2010.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Schweickert A, Weber T, Beyer T et al (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17:60–66. doi:10.1016/j.cub.2006.10.067

    Article  CAS  PubMed  Google Scholar 

  41. McGrath J, Somlo S, Makova S et al (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  CAS  PubMed  Google Scholar 

  42. •• Boskovski MT, Yuan S, Pedersen NB, et al (2013) The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 1–15. doi:10.1038/nature12723. An important template on how identification of a human mutation can be analyzed using the Xenopus embryo, gaining new fascinating insights into developmental mechanisms. Based on a single heterotaxia patient, the enzyme galnt11 was found to regulate Notch signaling during left-right axis specification. Depending on the presence or absence of Notch activity, left-right cilia are either non-motile sensoric or motile and flow generating, respectively

  43. Yoshiba S, Shiratori H, Kuo IY et al (2012) Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science. doi:10.1126/science.1222538

    PubMed Central  PubMed  Google Scholar 

  44. Tabin CJ, Vogan KJ (2003) A two-cilia model for vertebrate left-right axis specification. Genes Dev 17:1–6. doi:10.1101/gad.1053803

    Article  CAS  PubMed  Google Scholar 

  45. Yoshiba S, Hamada H (2013) Roles of cilia, fluid flow, and Ca(2+) signaling in breaking of left-right symmetry. Trends Genet 30:10–17. doi:10.1016/j.tig.2013.09.001

    Article  PubMed  Google Scholar 

  46. Kamura K, Kobayashi D, Uehara Y et al (2011) Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 138:1121–1129. doi:10.1242/dev.058271

    Article  CAS  PubMed  Google Scholar 

  47. Vick P, Schweickert A, Weber T et al (2009) Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. Dev Biol 331:281–291. doi:10.1016/j.ydbio.2009.05.547

    Article  CAS  PubMed  Google Scholar 

  48. Blum M, Schweickert A, Vick P et al (2014) Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev Biol. doi:10.1016/j.ydbio.2014.06.014

    PubMed  Google Scholar 

  49. Shook DR, Majer C, Keller R (2004) Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Dev Biol 270:163–185. doi:10.1016/j.ydbio.2004.02.021

    Article  CAS  PubMed  Google Scholar 

  50. Vonica A, Brivanlou AH (2007) The left-right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 303:281–294. doi:10.1016/j.ydbio.2006.09.039

    Article  CAS  PubMed  Google Scholar 

  51. Schweickert A, Vick P, Getwan M et al (2010) The nodal inhibitor coco is a critical target of leftward flow in Xenopus. Curr Biol 20:738–743. doi:10.1016/j.cub.2010.02.061

    Article  CAS  PubMed  Google Scholar 

  52. Blum M, Beyer T, Weber T et al (2009) Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev Dyn 238:1215–1225. doi:10.1002/dvdy.21855

    Article  PubMed  Google Scholar 

  53. Ferkol T, Leigh M (2006) Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol 30:335–340. doi:10.1053/j.semperi.2005.11.001

    Article  PubMed  Google Scholar 

  54. Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 35:116–129. doi:10.1080/01926230601060025

    Article  CAS  PubMed  Google Scholar 

  55. Rackley CR, Stripp BR (2012) Building and maintaining the epithelium of the lung. J Clin Invest 122:2724–2730. doi:10.1172/JCI60519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Walentek P, Bogusch S, Thumberger T et al (2014) A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles. Development 141:1526–1533. doi:10.1242/dev.102343

    Article  CAS  PubMed  Google Scholar 

  57. Dubaissi E, Rousseau K, Lea R et al (2014) A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 141:1514–1525. doi:10.1242/dev.102426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hayes JM, Kim SK, Abitua PB et al (2007) Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev Biol 312:115–130. doi:10.1016/j.ydbio.2007.09.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Dubaissi E, Papalopulu N (2011) Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis Model Mech 4:179–192. doi:10.1242/dmm.006494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Quigley IK, Stubbs JL, Kintner C (2011) Specification of ion transport cells in the Xenopus larval skin. Development 138:705–714. doi:10.1242/dev.055699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Wallmeier J, Al-Mutairi DA, Chen C-T et al (2014) Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Natl Genet 46:646–651. doi:10.1038/ng.2961

    Article  CAS  Google Scholar 

  62. •• Werner ME, Mitchell BJ (2012) Understanding ciliated epithelia: the power of Xenopus. Genesis 50:176–185. doi:10.1002/dvg.20824. Comprehensive review on Xenopus MCCs as a powerful tool to analyse specification and genesis of a mucociliary epithelium

  63. • Chung M-I, Peyrot SM, Leboeuf S, et al (2012) RFX2 is broadly required for ciliogenesis during vertebrate development. Dev Biol 363:155–165. doi:10.1016/j.ydbio.2011.12.029. By analyzing the function of the ciliogenesis transcription factor RFX2 in several ciliated tissues/organs of the Xenopus embryo such as the neural tube, epidermis, and kidney, this paper highlights the versatility of the frog system to study a range of ciliopathies

  64. Stubbs JL, Oishi I, Izpisúa Belmonte JC, Kintner C (2008) The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 40:1454–1460. doi:10.1038/ng.267

    Article  CAS  PubMed  Google Scholar 

  65. Hagenlocher C, Walentek P, Ller MC et al (2013) Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2:12. doi:10.1186/2046-2530-2-12

    Article  PubMed Central  PubMed  Google Scholar 

  66. Murdoch JN, Copp AJ (2010) The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res Part A Clin Mol Teratol 88:633–652. doi:10.1002/bdra.20686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 28:627–653. doi:10.1146/annurev-cellbio-092910-154208

    Article  CAS  PubMed  Google Scholar 

  68. Manojlovic Z, Earwood R, Kato A et al (2014) RFX7 is required for the formation of cilia in the neural tube. Mech Dev 132:28–37. doi:10.1016/j.mod.2014.02.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Edlund AF, Davidson LA, Keller RE (2013) Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus Laevis neurula. Dev Dyn. doi:10.1002/dvdy.24004

    PubMed Central  PubMed  Google Scholar 

  70. Davidson LA, Keller RE (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126:4547–4556

    CAS  PubMed  Google Scholar 

  71. Ericson J, Muhr J, Jessell TM, Edlund T (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int J Dev Biol 39:809–816

    CAS  PubMed  Google Scholar 

  72. Briscoe J, Ericson J (1999) The specification of neuronal identity by graded Sonic Hedgehog signalling. Semin Cell Dev Biol 10:353–362. doi:10.1006/scdb.1999.0295

    Article  CAS  PubMed  Google Scholar 

  73. Huangfu D, Liu A, Rakeman AS et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87. doi:10.1038/nature02061

    Article  CAS  PubMed  Google Scholar 

  74. Ramsbottom SA, Maguire RJ, Fellgett SW, Pownall ME (2014) Developmental Biology. Dev Biol 391:207–218. doi:10.1016/j.ydbio.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  75. Fennell EB, Gitten JC, Dede DE, Maria BL (1999) Cognition, behavior, and development in Joubert syndrome. J Child Neurol 14:592–596. doi:10.1177/088307389901400907

    Article  CAS  PubMed  Google Scholar 

  76. Brugmann SA, Allen NC, James AW et al (2010) A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 19:1577–1592. doi:10.1093/hmg/ddq030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Willaredt MA, Gorgas K, Gardner HAR, Tucker KL (2012) Multiple essential roles for primary cilia in heart development. Cilia 1:1. doi:10.1186/2046-2530-1-23

    Article  Google Scholar 

  78. Mayor R, Theveneau E (2013) The neural crest. Development 140:2247–2251. doi:10.1242/dev.091751

    Article  CAS  PubMed  Google Scholar 

  79. Olbrich H, Schmidts M, Werner C et al (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91:672–684. doi:10.1016/j.ajhg.2012.08.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ibanez-Tallon I (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141. doi:10.1093/hmg/ddh219

    Article  CAS  PubMed  Google Scholar 

  81. Baas D, Meiniel A, Benadiba C et al (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24:1020–1030. doi:10.1111/j.1460-9568.2006.05002.x

    Article  CAS  PubMed  Google Scholar 

  82. Dammermann A, Pemble H, Mitchell BJ et al (2009) The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev 23:2046–2059. doi:10.1101/gad.1810409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Colantonio JR, Vermot J, Wu D et al (2009) The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 457:205–209. doi:10.1038/nature07520

    Article  CAS  PubMed  Google Scholar 

  84. Beyer T, Danilchik M, Thumberger T et al (2012) Serotonin signaling is required for Wnt-dependent GRP specification and leftward flow in Xenopus. Curr Biol 22:33–39. doi:10.1016/j.cub.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  85. Antic D, Stubbs JL, Suyama K, et al (2010) Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and xenopus embryogenesis. PLoS One 5(2):1–8. doi:10.1371/journal.pone.0008999

    Article  Google Scholar 

  86. Mitchell B, Jacobs R, Li J et al (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101. doi:10.1038/nature05771

    Article  CAS  PubMed  Google Scholar 

  87. Mitchell B, Stubbs JL, Huisman F et al (2009) The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr Biol 19:924–929. doi:10.1016/j.cub.2009.04.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Jones EA (2005) Xenopus: a prince among models for pronephric kidney development. J Am Soc Nephrol 16:313–321. doi:10.1681/ASN.2004070617

    Article  CAS  PubMed  Google Scholar 

  89. Hoff S, Halbritter J, Epting D et al (2013) ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet 45:951–956. doi:10.1038/ng.2681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Bergmann C, Fliegauf M, Brüchle NO et al (2008) Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82:959–970. doi:10.1016/j.ajhg.2008.02.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kim SK, Shindo A, Park TJ et al (2010) Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 329:1337–1340. doi:10.1126/science.1191184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We like to thank Tina Beyer for providing SEM pictures, Thomas Thumberger for GTT, Susanne Bogusch for IF, Cathrin Hagenlocher for CSF flow, and Martin Blum for critical reading of the manuscript. KF was supported by a Margarete- von-Wrangell fellowship, funded by the European Social Fund and by the Ministry Of Science, Research and the Arts in Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Axel Schweickert or Kerstin Feistel.

Additional information

This article is part of the Topical Collection on Xenopus as a Model for Pathobiology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweickert, A., Feistel, K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. Curr Pathobiol Rep 3, 115–127 (2015). https://doi.org/10.1007/s40139-015-0074-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0074-2

Keywords

Navigation