Skip to main content

Advertisement

Log in

Watching the Brain: an Overview of Neuromonitoring Systems and Their Utility in the Emergency Department

  • Neurologic Emergencies (J Miller, Section Editor)
  • Published:
Current Emergency and Hospital Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of this Review

This review describes strategies for the emergency department setting that help facilitate monitoring of patients with acute neurological injuries. Multiple invasive and non-invasive modalities are available for the emergency physician to utilize as adjuncts to the physical examination and imaging of patients with neurological injuries. The value of these modalities lies in detection of subtle changes that signal early neurological decompensation. This article focuses on the most common devices along with their adoption and implementation into the practice of emergency medicine.

Recent Findings

The field of non-invasive neuromonitoring techniques is rapidly flourishing with an emphasis on portability and reproducibility, enhancing adoption into the practice of emergency medicine. Devices such as the extra-ventricular drain have proven to be of both diagnostic and therapeutic benefit, allowing for both global ICP monitoring and CSF sampling. However, as emergency physicians become more facile in the use of ultrasound, procedures such as optic nerve sheath diameter evaluation and transcranial Doppler assessments add to the availability of bedside neuromonitoring. It is important to note that many of these devices still require further validation.

Summary

The field of neuromonitoring encompasses invasive and non-invasive techniques. While useful, they require further validation to establish standardized protocols that would allow for consistent and reliable implementation in the emergency department.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tasneem N, Samaniego EA, Pieper C, Leira EC, Adams HP, Hasan D, et al. Brain multimodality monitoring: a new tool in neurocritical care of comatose patients. Crit Care Res Pract. 2017;2017:6097265.

    PubMed  PubMed Central  Google Scholar 

  2. Bell D. Brain injury and dysfunction: the critical role of primary management. In: Adams JP, Bell D, McKinlay J, editors. Neurocritical care: a guide to practical management. London: Springer; 2010.

    Google Scholar 

  3. Rasulo F, Matta B, Varanini N. Cerebral blood flow monitoring. In: Prabhakar H, editor. Neuromonitoring Techniques. London: Elsevier; 2018.

    Google Scholar 

  4. Zacharia BE, Conolly ES Jr. Principles of cerebral metabolism and blood flow. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in Neurocritical care. Philadelphia: Saunders; 2013.

    Google Scholar 

  5. Juul N, Morris GF, Marshall SB, Marshall LF. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The executive Committee of the International Selfotel Trial. J Neurosurg. 2000;92(1):1–6.

    CAS  PubMed  Google Scholar 

  6. •• Carney N, Totten AM, O'Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80(1):6–15. The guidelines reviewed 189 articles to develop 28 recommendations, covering 18 topics that address monitoring, treatment interventions and thresholds for treatment specifically for traumatic brain injury.

  7. Heck C. Invasive Neuromonitoring. Crit Care Nurs Clin North Am. 2016;28(1):77–86.

    PubMed  Google Scholar 

  8. Sekhon MS, Griesdale DE, Ainslie PN, Gooderham P, Foster D, Czosnyka M, et al. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation. 2019;141:96–103.

    PubMed  Google Scholar 

  9. Vella MA, Crandall ML, Patel MB. Acute Management of Traumatic Brain Injury. Surg Clin North Am. 2017;97(5):1015–30.

    PubMed  PubMed Central  Google Scholar 

  10. Kishore PR, Lipper MH, Becker DP, Domingues da Silva AA, Narayan RK. Significance of CT in head injury: correlation with intracranial pressure. AJR Am J Roentgenol. 1981;137(4):829–33.

    CAS  PubMed  Google Scholar 

  11. •• Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21(Suppl 2):S282–96. Recommendations for bedside physiological testing in acute neurological disorders. These recommendations were developed by the Neurocritical Care Society in collaboration with European Society of Intensive Care Medicine, Society of Critical Care Medicine, and Latin American Brain Injury Consortium.

    PubMed  Google Scholar 

  12. Kannan N, Quistberg A, Wang J, Groner JI, Mink RB, Wainwright MS, et al. Frequency of and factors associated with emergency department intracranial pressure monitor placement in severe paediatric traumatic brain injury. Brain Inj. 2017;31(13–14):1745–52.

    PubMed  PubMed Central  Google Scholar 

  13. So JS, Yun JH. The Combined Use of Cardiac Output and Intracranial Pressure Monitoring to Maintain Optimal Cerebral Perfusion.

  14. Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel). 2018;18(2):E465.

    Google Scholar 

  15. Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: gold standard and recent innovations. World J Clin Cases. 2019;7(13):1535–53.

    PubMed  PubMed Central  Google Scholar 

  16. Raboel PH, Bartek J Jr, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods-a review. Crit Care Res Pract. 2012;2012:950393.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Binz DD, Toussaint LG 3rd, Friedman JA. Hemorrhagic complications of ventriculostomy placement: a meta-analysis. Neurocrit Care. 2009;10(2):253–6.

    PubMed  Google Scholar 

  18. Lehman LB. Intracranial pressure monitoring and treatment: a contemporary view. Ann Emerg Med. 1990;19(3):295–303.

    CAS  PubMed  Google Scholar 

  19. Kessel B, Jeroukhimov I, Ashkenazi I, Khashan T, Oren M, Haspel J, et al. Early detection of life-threatening intracranial haemorrhage using a portable near-infrared spectroscopy device. Injury. 2007;38(9):1065–8.

    CAS  PubMed  Google Scholar 

  20. Lara LR, Püttgen HA. Multimodality monitoring in the neurocritical care unit. CONTINUUM: Lifelong Learning in Neurology. 2018;24(6):1776–88. https://doi.org/10.1212/con.0000000000000671.

    Article  Google Scholar 

  21. Okonkwo DO, Shutter LA, Moore C, Temkin NR, Puccio AM, Madden CJ, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14. https://doi.org/10.1097/CCM.0000000000002619.

    PubMed  PubMed Central  Google Scholar 

  22. Ziai WC, Schlattman D, Llinas R, Venkatesha S, Truesdale M, Schevchenko A, et al. Emergent EEG in the emergency department in patients with altered mental states. Clin Neurophysiol. 2012;123(5):910–7.

    PubMed  Google Scholar 

  23. Kanich W, Brady WJ, Huff JS, Perron AD, Holstege C, Lindbeck G, et al. Altered mental status: evaluation and etiology in the ED. Am J Emerg Med. 2002;20(7):613–7.

    PubMed  Google Scholar 

  24. Privitera MD, Strawsburg RH. Electroencephalographic monitoring in the emergency department. Emerg Med Clin North Am. 1994;12(4):1089–100.

    CAS  PubMed  Google Scholar 

  25. Jordan KG. Continuous EEG monitoring in the neuroscience intensive care unit and emergency department. J Clin Neurophysiol. 1999;16(1):14–39.

    CAS  PubMed  Google Scholar 

  26. Abdel Baki SG, Omurtag A, Fenton AA, Zehtabchi S. The new wave: time to bring EEG to the emergency department. Int J Emerg Med. 2011;4:36.

    PubMed  PubMed Central  Google Scholar 

  27. Rittenberger JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16(1):114–22.

    PubMed  PubMed Central  Google Scholar 

  28. Firosh Khan S, Ashalatha R, Thomas SV, Sarma PS. Emergent EEG is helpful in neurology critical care practice. Clin Neurophysiol. 2005;116(10):2454–9.

    CAS  PubMed  Google Scholar 

  29. Hobbs K, Krishnamohan P, Legault C, Goodman S, Parvizi J, Gururangan K, et al. Rapid bedside evaluation of seizures in the ICU by listening to the sound of brainwaves: a prospective observational clinical trial of Ceribell's brain stethoscope function. Neurocrit Care. 2018;29(2):302–12.

    PubMed  Google Scholar 

  30. Pattinson K. Monitoring intracranial pressure, perfusion and metabolism. Continuing Educ Anaesth Crit Care Pain. 2005;5(4):130–3.

    Google Scholar 

  31. Abecasis F, Oliveira V, Robba C, Czosnyka M. Transcranial Doppler in pediatric emergency and intensive care unit: a case series and literature review. Childs Nerv Syst. 2018;34(8):1465–70.

    PubMed  Google Scholar 

  32. • Montrief T, Alerhand S, Jewell C, Scott J. Incorporation of transcranial Doppler into the ED for the neurocritical care patient. Am J Emerg Med. 2019;37(6):1144–52. Narrative review of the applicability of TCD in the emergency department with case based discussions.

    PubMed  Google Scholar 

  33. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    CAS  PubMed  Google Scholar 

  34. Bouzat P, Oddo M, Payen JF. Transcranial Doppler after traumatic brain injury: is there a role? Curr Opin Crit Care. 2014;20(2):153–60.

    PubMed  Google Scholar 

  35. Rutgers DR, Blankensteijn JD, van der Grond J. Preoperative MRA flow quantification in CEA patients: flow differences between patients who develop cerebral ischemia and patients who do not develop cerebral ischemia during cross-clamping of the carotid artery. Stroke. 2000;31(12):3021–8.

    CAS  PubMed  Google Scholar 

  36. Gura M, Elmaci I, Sari R, Coskun N. Correlation of pulsatility index with intracranial pressure in traumatic brain injury. Turk Neurosurg. 2011;21(2):210–5.

    PubMed  Google Scholar 

  37. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51 discussion.

    PubMed  Google Scholar 

  38. Chan KH, Dearden NM, Miller JD. The significance of posttraumatic increase in cerebral blood flow velocity: a transcranial Doppler ultrasound study. Neurosurgery. 1992;30(5):697–700.

    CAS  PubMed  Google Scholar 

  39. Homburg AM, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87(6):488–93.

    CAS  PubMed  Google Scholar 

  40. Splavski B, Radanovic B, Vrankovic D, Has B, Muzevic D, Janculjak D, et al. Transcranial Doppler ultrasonography as an early outcome forecaster following severe brain injury. Br J Neurosurg. 2006;20(6):386–90.

    CAS  PubMed  Google Scholar 

  41. Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS. Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit. 2005;11(2):CR49–52.

    PubMed  Google Scholar 

  42. Wakerley BR, Kusuma Y, Yeo LL, Liang S, Kumar K, Sharma AK, et al. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging. 2015;25(1):111–6.

    PubMed  Google Scholar 

  43. Cardim D, Robba C, Donnelly J, Bohdanowicz M, Schmidt B, Damian M, et al. Prospective study on noninvasive assessment of intracranial pressures in traumatic brain-injured patients: comparison of four methods. J Neurotrauma. 2016;33(8):792–802.

    PubMed  PubMed Central  Google Scholar 

  44. Ract C, Le Moigno S, Bruder N, Vigue B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med. 2007;33(4):645–51.

    PubMed  Google Scholar 

  45. Shafe M, Blaivas M, Hooker E, Straus L. Noninvasive intracranial cerebral flow velocity evaluation in the emergency department by emergency physicians. Acad Emerg Med. 2004;11(7):774–7.

    PubMed  Google Scholar 

  46. Tazarourte K, Atchabahian A, Tourtier JP, David JS, Ract C, Savary D, et al. Pre-hospital transcranial Doppler in severe traumatic brain injury: a pilot study. Acta Anaesthesiol Scand. 2011;55(4):422–8.

    CAS  PubMed  Google Scholar 

  47. Af Geijerstam JL, Britton M. Mild head injury - mortality and complication rate: meta-analysis of findings in a systematic literature review. Acta Neurochir. 2003;145(10):843–50.

    PubMed  Google Scholar 

  48. Compagnone C, d'Avella D, Servadei F, Angileri FF, Brambilla G, Conti C, et al. Patients with moderate head injury: a prospective multicenter study of 315 patients. Neurosurgery. 2009;64(4):690–6 discussion 6-7.

    PubMed  Google Scholar 

  49. Bouzat P, Francony G, Declety P, Genty C, Kaddour A, Bessou P, et al. Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery. 2011;68(6):1603–9 discussion 9-10.

    PubMed  Google Scholar 

  50. Jaffres P, Brun J, Declety P, Bosson JL, Fauvage B, Schleiermacher A, et al. Transcranial Doppler to detect on admission patients at risk for neurological deterioration following mild and moderate brain trauma. Intensive Care Med. 2005;31(6):785–90.

    PubMed  Google Scholar 

  51. Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David JS, et al. Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology. 2016;125(2):346–54.

    PubMed  Google Scholar 

  52. Wang LJ, Chen LM, Chen Y, Bao LY, Zheng NN, Wang YZ, et al. Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure. JAMA Ophthalmol. 2018;136(3):250–6.

    PubMed  PubMed Central  Google Scholar 

  53. Ballantyne SA, O'Neill G, Hamilton R, Hollman AS. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound. 2002;15(3):145–9.

    CAS  PubMed  Google Scholar 

  54. Chen H, Ding GS, Zhao YC, Yu RG, Zhou JX. Ultrasound measurement of optic nerve diameter and optic nerve sheath diameter in healthy Chinese adults. BMC Neurol. 2015;15:106.

    PubMed  PubMed Central  Google Scholar 

  55. Goeres P, Zeiler FA, Unger B, Karakitsos D, Gillman LM. Ultrasound assessment of optic nerve sheath diameter in healthy volunteers. J Crit Care. 2016;31(1):168–71.

    PubMed  Google Scholar 

  56. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.

    PubMed  Google Scholar 

  57. Messerer M, Berhouma M, Messerer R, Dubourg J. Interest of optic nerve sheath diameter ultrasonography in detecting non-invasively raised intracranial pressure. Neurochirurgie. 2013;59(2):55–9.

    CAS  PubMed  Google Scholar 

  58. Ohle R, McIsaac SM, Woo MY, Perry JJ. Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis. J Ultrasound Med. 2015;34(7):1285–94.

    PubMed  Google Scholar 

  59. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14.

    PubMed  Google Scholar 

  60. •• Agrawal A, Cheng R, Tang J, Madhok DY. Comparison of two techniques to measure optic nerve sheath diameter in patients at risk for increased intracranial pressure. Crit Care Med. 2019;47(6):e495–501. Prospective blinded observational study in two academic centers that suggests that an axial technique in measuring the optic nerve sheath diameter is most likley to predict high first measured intra cranial pressure with a relative cut off of 6.2mm and 100% sensitivity. This was a 20 patient observational study.

    PubMed  Google Scholar 

  61. Robba C, Santori G, Czosnyka M, Corradi F, Bragazzi N, Padayachy L, et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2018;44(8):1284–94.

    PubMed  Google Scholar 

  62. Raffiz M, Abdullah JM. Optic nerve sheath diameter measurement: a means of detecting raised ICP in adult traumatic and non-traumatic neurosurgical patients. Am J Emerg Med. 2017;35(1):150–3.

    PubMed  Google Scholar 

  63. Launey Y, Nesseler N, Le Maguet P, Malledant Y, Seguin P. Effect of osmotherapy on optic nerve sheath diameter in patients with increased intracranial pressure. J Neurotrauma. 2014;31(10):984–8.

    PubMed  Google Scholar 

  64. Hansen HC, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997;87(1):34–40.

    CAS  PubMed  Google Scholar 

  65. Maissan IM, Dirven PJ, Haitsma IK, Hoeks SE, Gommers D, Stolker RJ. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg. 2015;123(3):743–7.

    PubMed  Google Scholar 

  66. Vaiman M, Sigal T, Kimiagar I, Bekerman I. Intracranial pressure assessment in traumatic head injury with hemorrhage via optic nerve sheath diameter. J Neurotrauma. 2016;33(23):2147–53.

    PubMed  Google Scholar 

  67. Bekerman I, Gottlieb P, Vaiman M. Variations in eyeball diameters of the healthy adults. J Ophthalmol. 2014;2014:503645.

    PubMed  PubMed Central  Google Scholar 

  68. Drayna PC, Abramo TJ, Estrada C. Near-infrared spectroscopy in the critical setting. Pediatr Emerg Care. 2011;27(5):432–9 quiz 40-2.

    PubMed  Google Scholar 

  69. Caglar A, Er A, Ulusoy E, Akgul F, Citlenbik H, Yilmaz D, et al. Cerebral oxygen saturation monitoring in pediatric cardiopulmonary resuscitation patients in the emergency settings: a small descriptive study. Turk J Pediatr. 2017;59(6):642–7.

    PubMed  Google Scholar 

  70. Kampfl A, Pfausler B, Denchev D, Jaring HP, Schmutzhard E. Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. A pilot study. Acta Neurochir Suppl. 1997;70:112–4.

    CAS  PubMed  Google Scholar 

  71. Subbaswamy A, Hsu AA, Weinstein S, Bell MJ. Correlation of cerebral near-infrared spectroscopy (cNIRS) and neurological markers in critically ill children. Neurocrit Care. 2009;10(1):129–35.

    CAS  PubMed  Google Scholar 

  72. Genbrugge C, Eertmans W, Meex I, Van Kerrebroeck M, Daems N, Creemers A, et al. What is the value of regional cerebral saturation in post-cardiac arrest patients? A prospective observational study. Crit Care. 2016;20(1):327.

    PubMed  PubMed Central  Google Scholar 

  73. Prosen G, Strnad M, Doniger SJ, Markota A, Stozer A, Borovnik-Lesjak V, et al. Cerebral tissue oximetry levels during prehospital management of cardiac arrest - a prospective observational study. Resuscitation. 2018;129:141–5.

    PubMed  Google Scholar 

  74. Mullner M, Sterz F, Binder M, Hirschl MM, Janata K, Laggner AN. Near infrared spectroscopy during and after cardiac arrest--preliminary results. Clin Intensive Care. 1995;6(3):107–11.

    CAS  PubMed  Google Scholar 

  75. Tsukuda J, Fujitani S, Morisawa K, Shimozawa N, Lohman BD, Okamoto K, et al. Near-infrared spectroscopy monitoring during out-of-hospital cardiac arrest: can the initial cerebral tissue oxygenation index predict ROSC? Emerg Med J. 2019;36(1):33–8.

  76. Ghalenoui H, Saidi H, Azar M, Yahyavi ST, Borghei Razavi H, Khalatbari M. Near-infrared laser spectroscopy as a screening tool for detecting hematoma in patients with head trauma. Prehosp Disaster Med. 2008;23(6):558–61.

    PubMed  Google Scholar 

  77. Kahraman S, Kayali H, Atabey C, Acar F, Gocmen S. The accuracy of near-infrared spectroscopy in detection of subdural and epidural hematomas. J Trauma. 2006;61(6):1480–3.

    PubMed  Google Scholar 

  78. Venkatesh B. Monitoring cerebral perfusion and oxygenation: an elusive goal. Critical Care and Resuscitation. 2005;7:195–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namita Jayaprakash.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurologic Emergencies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grahf, D.C., Binz, S.I., Belle, T. et al. Watching the Brain: an Overview of Neuromonitoring Systems and Their Utility in the Emergency Department. Curr Emerg Hosp Med Rep 8, 25–34 (2020). https://doi.org/10.1007/s40138-020-00208-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40138-020-00208-3

Keywords

Navigation