Skip to main content

Advertisement

Log in

Intravenous and Oral Hyperammonemia Management

  • Pharmacology of Acute Care (J Fanikos, Section Editor)
  • Published:
Current Emergency and Hospital Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hyperammonemia have significant morbidity and mortality. In this paper, we reviewed the latest research and evidence of both conventional and upcoming oral or intravenous treatments.

Recent Findings

New updates on the role of oral agents such as rifaximin, PEG, probiotics, glycerol phenylbutyrate, and zinc supplements in the management of both chronic hyperammonemia and overt hepatic encephalopathy have been discussed in this review. We discussed the recent findings on the role of branched-chain amino acids in patients with cirrhosis.

Summary

Rifaximin role has expanded as mono or combination therapy in patients with hepatic encephalopathy. Probiotics and zinc might play a role in the prevention of overt hepatic encephalopathy. Newer oral agents such as activated carbon seem to be promising. Saline or albumin might play a role in diuretic-induced hyperammonemia but their role is yet to be determined. More research is needed for new interventions and treatment validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ASL:

Argininosuccinic acid lyase

ASS:

Argininosuccinate synthetase

ATP:

Adenosine 5′-triphosphate

BBB:

Blood-brain barrier

BCAA:

Branch chain amino acids

CPS:

Carbamyl phosphate synthetase

CT:

Computed tomography

GI:

Gastrointestinal

ICH:

Intracranial hemorrhage

IEM:

Inborn error of metabolism

IV:

Intravenous

LOLA:

L-Ornithine-L-aspartate

MRI:

Magnetic resonance imaging

NAGS:

N-Acetyl glutamine synthetase

OTC:

Ornithine transcarbamylase

RRT:

Renal replacement therapy

TPN:

Total parenteral nutrition

UCDs:

Urea cycle disorders

US:

Ultrasonography

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Bachmann C. Mechanisms of hyperammonemia. Clin Chem Lab Med. 2002;40:653–62.

    CAS  PubMed  Google Scholar 

  2. Vince A, Dawson AM, Park N, O’Grady F. Ammonia production by intestinal bacteria. Gut. 1973;14:171–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Karim Z, Szutkowska M, Vernimmen C, et al. Renal handling of NH3/NH4+: recent concepts. Nephron Physiol. 2005;101:77–81.

    Google Scholar 

  4. Olde Damink SW, Dejong CH, Deutz NE, et al. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2006;291:G189–94.

    CAS  PubMed  Google Scholar 

  5. Ott P, Vilstrup H. Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis. 2014;29:901–11.

    CAS  PubMed  Google Scholar 

  6. Reeds P, Burrin D, Stoll C, et al. Intestinal glutamate metabolism. J Nutr. 2000;130(4):978S–82S.

    CAS  PubMed  Google Scholar 

  7. Benque A, Bommelaer G, Rosental G. Chronic vomiting in a case of citrullinaemia detected after treatment by total parenteral nutrition. Gut. 1984;25:531–533 A.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clay AS, Hainline BE. Hyperammonemia in the ICU. Chest. 2007;132(4):1368–78.

    CAS  PubMed  Google Scholar 

  9. Machado MC, Pinheiro da Silva F. Hyperammonemia due to urea cycle disorders: a potentially fatal condition in the intensive care setting. J Intensive Care. 2014;2(1):22.

    PubMed  PubMed Central  Google Scholar 

  10. Albrecht J, Zielinska M, Norenberg MD. Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol. 2010;80(9):1303–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Patil D, Westaby D, Mahida Y, et al. Comparative modes of action of lactitol and lactulose in the treatment of hepatic encephalopathy. Gut. 1987;28:255–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wright G, Noiret L, Olde Damink SW, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int. 2011;31:163–75.

    CAS  PubMed  Google Scholar 

  13. Helman G, Pacheco-Colón I, Gropman A. The urea cycle disorders. Semin Neurol. 2014;34(3):341–9.

    PubMed  Google Scholar 

  14. Brusilow SW, Maestri NE. Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr Infect Dis. 1996;43:127–70.

    CAS  Google Scholar 

  15. Grisar T. Argininosuccinic aciduria in adult: a clinical, electrophysiological and biochemical study. Adv Exp Med Biol. 1982;153:83–93.

    CAS  PubMed  Google Scholar 

  16. Kobayashi K, Shaheen N, Kumashiro R, Tanikawa K, O’Brien WE, Beaudet AL, et al. A search for the primary abnormality in adult-onset type II citrullinemia. Am J Hum Genet. 1993;53:1024–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Summar M, Barr F, Dawling S, et al. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin. 2005;21(suppl):S1–8.

    PubMed  Google Scholar 

  18. Butterworth RF. Effects of hyperammonaemia on brain function. J Inherit Metab Dis. 1998;21:6–20.

    PubMed  Google Scholar 

  19. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci. 2005;62:2295–304.

    CAS  PubMed  Google Scholar 

  20. Vaquero J, Chung C, Cahill ME, Blei AT. Pathogenesis of hepatic encephalopathy in acute liver failure. Semin Liver Dis. 2003;23:259–69.

    CAS  PubMed  Google Scholar 

  21. Rangroo Thrane V, Thrane AS, Wang F, et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med. 2013;19(12):1643–8.

    PubMed  Google Scholar 

  22. Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22(3–4):199–218.

    CAS  PubMed  Google Scholar 

  23. Clemmesen JO, Larsen FS, Kondrup J, et al. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29(3):648–53.

    CAS  PubMed  Google Scholar 

  24. Kulick SK, Kramer DA. Hyperammonemia secondary to valproic acid as a cause of lethargy in a postictal patient. Ann Emerg Med. 1993;22:610–2.

    CAS  PubMed  Google Scholar 

  25. Ambrosetto G, Riva R, Baruzzi A. Hyperammonemia in asterixis induced by carbamazepine: two case reports. Acta Neurol Scand. 1984;69:186–9.

    CAS  PubMed  Google Scholar 

  26. Bertrand P, Faro A, Cantwell P, Tzakis A. Intravenous ribavirin and hyperammonemia in an immunocompromised patient infected with adenovirus. Pharmacotherapy. 2000;20:1216–20.

    CAS  PubMed  Google Scholar 

  27. Sekas G, Paul HS. Hyperammonemia and carnitine deficiency in a patient receiving sulfadiazine and pyrimethamine. Am J Med. 1993;95:112–3.

    CAS  PubMed  Google Scholar 

  28. Ishikawa F, Nakamuta M, Kato M, et al. Reversibility of serum NH3 level in a case of sudden onset and rapidly progressive case of type 2 citrullinemia. Intern Med. 2000;39:925–9.

    CAS  PubMed  Google Scholar 

  29. Solga S. Probiotics can treat hepatic encephalopathy. Med Hypotheses. 2003;61:307–13.

    CAS  PubMed  Google Scholar 

  30. Samtoy B, DeBeukelaer MM. Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis. Pediatrics. 1980;65:294–7.

    CAS  PubMed  Google Scholar 

  31. Cheang HK, Rangecroft L, Plant ND, Morris AAM. Hyperammonaemia due to Klebsiella infection in a neuropathic bladder. Pediatr Nephrol. 1998;12:658–9.

    CAS  PubMed  Google Scholar 

  32. Kaveggia FF, Thompson JS, Schafer EC, Fischer JL, Taylor RJ. Hyperammonemic encephalopathy in urinary diversion with urea-splitting urinary tract infection. Arch Intern Med. 1990;150:2389–92.

    CAS  PubMed  Google Scholar 

  33. Nurmohamed S, Weenink A, Moeniralam H, et al. Hyperammonemia in generalized Mycobacterium genavense infection after renal transplantation. Am J Transplant. 2007;7(3):722–3.

    CAS  PubMed  Google Scholar 

  34. Wylam ME, Kennedy CC, Hernandez NM. Fatal hyperammonaemia caused by Mycoplasma hominis. Lancet. 2013;382(9908):1956.

    PubMed  Google Scholar 

  35. Barnes PM, Wheldon DB, Eggerding C, Marshall WC, Leonard JV. Hyperammonaemia and disseminated herpes simplex infection in the neonatal period. Lancet. 1982;1:1362–3.

    CAS  PubMed  Google Scholar 

  36. Lo WD, Sloan HR, Sotos JF, Klinger RJ. Late clinical presentation of partial carbamyl phosphate synthetase I deficiency. Am J Dis Child. 1993;147:267–9.

    CAS  PubMed  Google Scholar 

  37. Finkelstein JE, Hauser ER, Leonard CO, Brusilow SW. Late-onset ornithine transcarbamylase deficiency in male patients. J Pediatr. 1990;117:897–902.

    CAS  PubMed  Google Scholar 

  38. Schimanski U, Krieger D, Horn M, Stremmel W, Wermuth B, Theilmann L. A novel two-nucleotide deletion in the ornithine transcarbamylase gene causing fatal hyperammonia in early pregnancy. Hepatology. 1996;24:1413–5.

    CAS  PubMed  Google Scholar 

  39. Arn PH, Hauser ER, Thomas GH, Herman G, Hess D, Brusilow SW. Hyperammonemia in women with a mutation at the ornithine carbamoyltransferase locus: a cause of postpartum coma. N Engl J Med. 1990;322:1652–5.

    CAS  PubMed  Google Scholar 

  40. Felig DM, Brusilow SW, Boyer JL. Hyperammonemic coma due to parenteral nutrition in a woman with heterozygous ornithine transcarbamylase deficiency. Gastroenterology. 1995;109:282–4.

    CAS  PubMed  Google Scholar 

  41. Davies SM, Szabo E, Wagner JE, Ramsay NK, Weisdorf DJ. Idiopathic hyperammonemia: a frequently lethal complication of bone marrow transplantation. Bone Marrow Transplant. 1996;17:1119–25.

    CAS  PubMed  Google Scholar 

  42. Mitchell RB, Wagner JE, Karp JE, Watson AJ, Brusilow SW, Przepiorka D, et al. Syndrome of idiopathic hyperammonemia after high-dose chemotherapy: review of nine cases. Am J Med. 1988;85:662–7.

    CAS  PubMed  Google Scholar 

  43. Matsuzaki H, Uchiba M, Yoshimura K, Yoshida M, Akahoshi Y, Okazaki K, et al. Hyperammonemia in multiple myeloma. Acta Haematol. 1990;84:130–4.

    CAS  PubMed  Google Scholar 

  44. Kwan L, Wang C, Levitt L. Hyperammonemic encephalopathy in multiple myeloma. N Engl J Med. 2002;346:1674–5.

    PubMed  Google Scholar 

  45. Takimoto Y, Imanaka F, Hayashi Y, Morioka S. A patient with ammonia-producing multiple myeloma showing hyperammonemic encephalopathy. Leukemia. 1996;10:918–9.

    CAS  PubMed  Google Scholar 

  46. Ho AY, Mijovic A, Pagliuca A, Mufti GJ. Idiopathic hyperammonaemia syndrome following allogeneic peripheral blood progenitor cell transplantation (allo-PBPCT). Bone Marrow Transplant. 1997;20:1007–8.

    CAS  PubMed  Google Scholar 

  47. Liaw CC, Liaw SJ, Wang CH, Chiu MC, Huang JS. Transient hyperammonemia related to chemotherapy with continuous infusion of high-dose 5-fluorouracil. Anti-Cancer Drugs. 1993;4:311–5.

    CAS  PubMed  Google Scholar 

  48. Espinos J, Rifon J, Perez-Calvo J, et al. Idiopathic hyperammonemia following high-dose chemotherapy. Bone Marrow Transplant. 2006;37:899.

    CAS  PubMed  Google Scholar 

  49. Lichtenstein GR, Yang YX, Nunes FA, Lewis JD, Tuchman M, Tino G, et al. Fatal hyperammonemia after orthotopic lung transplantation. Ann Intern Med. 2000;132:283–7.

    CAS  PubMed  Google Scholar 

  50. del Rosario M, Werlin SL, Lauer SJ. Hyperammonemic encephalopathy after chemotherapy: survival after treatment with sodium benzoate and sodium phenylacetate. J Clin Gastroenterol. 1997;25:682–4.

    PubMed  Google Scholar 

  51. Vaquero J, Blei AT. Mild hypothermia for acute liver failure: a review of mechanisms of action. J Clin Gastroenterol. 2005;39:S147–57.

    PubMed  Google Scholar 

  52. Salvi S, Santorelli FM, Bertini E, Boldrini R, Meli C, Donati A, et al. Clinical and molecular findings in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Neurology. 2001;57:911–4.

    CAS  PubMed  Google Scholar 

  53. Lemay JF, Lambert MA, Mitchell GA, Vanasse M, Valle D, Arbour JF, et al. Hyperammonemia-hyperornithinemia-homocitrullinuria syndrome: neurologic, ophthalmologic, and neuropsychologic examination of six patients. J Pediatr. 1992;121:725–30.

    CAS  PubMed  Google Scholar 

  54. Smith W, Kishnani PS, Lee B, Singh RH, Rhead WJ, Sniderman King L, et al. Urea cycle disorders: clinical presentation outside the newborn period. Crit Care Clin. 2005;21:S9–S17.

    PubMed  Google Scholar 

  55. Blanco Vela CI, Bosques Padilla FJ. Determination of ammonia concentrations in cirrhosis patients-still confusing after all these years? Ann Hepatol. 2011;10(Suppl 2):S60–5.

    PubMed  Google Scholar 

  56. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, van Lente F, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114(3):188–93.

    CAS  PubMed  Google Scholar 

  57. Haberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Biophys. 2013;536(2):101–8.

    CAS  PubMed  Google Scholar 

  58. Colombo JP, Peheim E, Kretschmer R, Dauwalder H, Sidiropoulos D. Plasma ammonia concentrations in newborns and children. Clin Chim Acta. 1984;138(3):283–91.

    CAS  PubMed  Google Scholar 

  59. Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

    PubMed  PubMed Central  Google Scholar 

  60. Alfadhel M, Mutairi FA, Makhseed N. Guidelines for acute management hyperammonemia in the Middle East region. Ther Clin Risk Manag. 2016;12:479–87.

    PubMed  PubMed Central  Google Scholar 

  61. Naylor EW, Chace DH. Automated tandem mass spectrometry for mass newborn screening for disorders in fatty acid, organic acid, and amino acid metabolism. J Child Neurol. 1999;14(Suppl 1):S4–8.

    PubMed  Google Scholar 

  62. Wraith JE. Ornithine carbamoyltransferase deficiency. Arch Dis Child. 2001;84:84–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Steiner RD, Cederbaum SD. Laboratory evaluation of urea cycle disorders. J Pediatr. 2001;138:S21–9.

    CAS  PubMed  Google Scholar 

  64. Watanabe A. Portal-systemic encephalopathy in non-cirrhotic patients: classification of clinical types, diagnosis and treatment. J Gastroenterol Hepatol. 2000;15(9):969–79.

    CAS  PubMed  Google Scholar 

  65. Laish I, Ben AZ. Noncirrhotic hyperammonaemic encephalopathy. Liver Int. 2011;31(9):1259–70.

    PubMed  Google Scholar 

  66. Upadhyay R, Bleck TP, Busl KM. Hyperammonemia: what urea-lly need to know: case report of severe noncirrhotic hyperammonemic encephalopathy and review of the literature. Case Rep Med. 2016;2016:8512721.

    PubMed  PubMed Central  Google Scholar 

  67. U-King-Im JM, Yu E, Bartlett E, Soobrah R, Kucharczyk W. Acute hyperammonemic encephalopathy in adults: imaging findings. AJNR Am J Neuroradiol. 2011;32(2):413–8.

    CAS  PubMed  Google Scholar 

  68. Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60(2):715–35.

    PubMed  Google Scholar 

  69. Als-Nielsen B, Gluud LL, Gluud C. Nonabsorbable disaccharides for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;2:CD003044.

    Google Scholar 

  70. Leise MD, Poterucha JJ, Kamath PS, Kim WR. Management of hepatic encephalopathy in the hospital. Mayo Clin Proc. 2014;89:241–53.

    PubMed  PubMed Central  Google Scholar 

  71. •• Gluud LL, Vilstrup H, Morgan MY. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev. 2016; (5):CD003044. This was a meta-analysis for 38 randomized clinical trials that were selected based on GRADE criteria. Th authors compared non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Random-effects meta-analysis showed a beneficial effect of non-absorbable disaccharides on mortality, hepatic encephalopathy compared to placebo. In addition, non-absorbable disaccharides can help to reduce serious adverse events associated with the underlying liver disease including liver failure, hepatorenal syndrome, and variceal bleeding.

  72. Als-Nielsen B, Gluud LL, Gluud C. Non-absorbable disaccharides for hepatic encephalopathy: systematic review of randomised trials. BMJ. 2004;328(7447):1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rahimi RS, Singal AG, Cuthbert JA, Rockey DC. Lactulose vs polyethylene glycol 3350—electrolyte solution for treatment of overt hepatic encephalopathy: the HELP randomized clinical trial. JAMA Intern Med. 2014;174(11):1727–33.

    PubMed  PubMed Central  Google Scholar 

  74. Gupta T, Rathi S, Dhiman RK. Managing encephalopathy in the outpatient setting. Euroasian J Hepato-Gastroenterol. 2017;7(1):48–54.

    Google Scholar 

  75. Kimer N, Krag A, Gluud LL. Safety, efficacy, and patient acceptability of rifaximin for hepatic encephalopathy. Patient Prefer Adherence. 2014;8:331–8.

    PubMed  PubMed Central  Google Scholar 

  76. Atterbury CE, Maddrey WC, Conn HO. Neomycin-sorbitol and lactulose in the treatment of acute portal-systemic encephalopathy. A controlled, double-blind clinical trial. Am J Dig Dis. 1978;23(5):398–406.

    CAS  PubMed  Google Scholar 

  77. Last PM, Sherlock S. Systemic absorption of orally administered neomycin in liver disease. N Engl J Med. 1960;262:385–9.

    CAS  PubMed  Google Scholar 

  78. Kim KH, Choi JW, Lee JY, Kim TD, Paek JH, Lee EJ, et al. Two cases of metronidazole-induced encephalopathy. Korean J Gastroenterol. 2005;45(3):195–200.

    PubMed  Google Scholar 

  79. Uhl MD, Riely CA. Metronidazole in treating portosystemic encephalopathy. Ann Intern Med. 1996;124:455.

    CAS  PubMed  Google Scholar 

  80. Tarao K, Ikeda T, Hayashi K, Sakurai A, Okada T, Ito T, et al. Successful use of vancomycin hydrochloride in the treatment of lactulose resistant chronic hepatic encephalopathy. Gut. 1990;31(6):702–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lester W. Rifampin: a semisynthetic derivative of rifamycin—a prototype for the future. Annu Rev Microbiol. 1972;26:85–102.

    CAS  PubMed  Google Scholar 

  82. Marchi E, Montecchi L, Venturini AP, et al. 4-Deoxypyrido[1′,2′:1,2]imidazo[5,4-c]rifamycin SV derivatives. A new series of semisynthetic rifamycins with high antibacterial activity and low gastroenteric absorption. J Med Chem. 1985;28(7):960–3.

    CAS  PubMed  Google Scholar 

  83. Bucci L, Palmieri GC. Double-blind, double-dummy comparison between treatment with rifaximin and lactulose in patients with medium to severe degree hepatic encephalopathy. Curr Med Res Opin. 1993;13(2):109–18.

    CAS  PubMed  Google Scholar 

  84. Pedretti G, Calzetti C, Missale G, et al. Rifaximin versus neomycin on hyperammoniemia in chronic portal systemic encephalopathy of cirrhotics. A double-blind, randomized trial. Ital J Gastroenterol. 1991;23(4):175–8.

    CAS  PubMed  Google Scholar 

  85. Mas A, Rodés J, Sunyer L, Rodrigo L, Planas R, Vargas V, et al. Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial. J Hepatol. 2003;38(1):51–8.

    CAS  PubMed  Google Scholar 

  86. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81.

    CAS  PubMed  Google Scholar 

  87. Sharma BC, Sharma P, Lunia MK, Srivastava S, Goyal R, Sarin SK. A randomized, double-blind, controlled trial comparing rifaximin plus lactulose with lactulose alone in treatment of overt hepatic encephalopathy. Am J Gastroenterol. 2013;108(9):1458–63.

    CAS  PubMed  Google Scholar 

  88. Kimer N, Krag A, Møller S, Bendtsen F, Gluud LL. Systematic review with meta-analysis: the effects of rifaximin in hepatic encephalopathy. Aliment Pharmacol Ther. 2014;40(2):123–32.

    CAS  PubMed  Google Scholar 

  89. Blandizzi C, Viscomi GC, Marzo A, Scarpignato C. Is generic rifaximin still a poorly absorbed antibiotic? A comparison of branded and generic formulations in healthy volunteers. Pharmacol Res. 2014;85:39–44.

    CAS  PubMed  Google Scholar 

  90. Huang DB, DuPont HL. Rifaximin—a novel antimicrobial for enteric infections. J Inf Secur. 2005;50(2):97–106.

    Google Scholar 

  91. Descombe JJ, Dubourg D, Picard M, Palazzini E. Pharmacokinetic study of rifaximin after oral administration in healthy volunteers. Int J Clin Pharmacol Res. 1994;14(2):51–6.

    CAS  PubMed  Google Scholar 

  92. Ahire K, Sonawale A. Comparison of rifaximin plus lactulose with the lactulose alone for the treatment of hepatic encephalopathy. J Assoc Physicians India. 2017;65(8):42–6.

    PubMed  Google Scholar 

  93. Williams R, James OF, Warnes TW. Evaluation of the efficacy and safety of rifaximin in the treatment of hepatic encephalopathy: a double-blind, randomized, dose-finding multi-centre study. Eur J Gastroenterol Hepatol. 2000;12(2):203–8.

    CAS  PubMed  Google Scholar 

  94. Paik YH, Lee KS, Han KH, Song KH, Kim MH, Moon BS, et al. Comparison of rifaximin and lactulose for the treatment of hepatic encephalopathy: a prospective randomized study. Yonsei Med J. 2005;46(3):399–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu GQ, Shi KQ, Huang S, Wang LR, Lin YQ, Huang GQ, et al. Systematic review with network meta-analysis: the comparative effectiveness and safety of interventions in patients with overt hepatic encephalopathy. Aliment Pharmacol Ther. 2015;41(7):624–35.

    CAS  PubMed  Google Scholar 

  96. Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet. 1979;2(8140):452–4.

    CAS  PubMed  Google Scholar 

  97. Barshop BA, Breuer J, Holm J, Leslie J, Nyhan WL. Excretion of hippuric acid during sodium benzoate therapy in patients with hyperglycinaemia or hyperammonaemia. J Inherit Metab Dis. 1989;12:72–9.

    CAS  PubMed  Google Scholar 

  98. Webster LT, Siddiqui UA, Lucas SV, Strong JM, Mieyal JJ. Identification of separate Acyl-CoA:Glycine and Acyl-CoA:L-glutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man. J Biol Chem. 1976;251:3352–8.

    CAS  PubMed  Google Scholar 

  99. Walker V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes Metab. 2009;11:823–35.

    CAS  PubMed  Google Scholar 

  100. • Kristiansen RG, Rose CF. Ytrebo LM Glycine and hyperammonemia: potential target for the treatment of hepatic encephalopathy. Metab Brain Dis. 2016;31:1269–73. The authors discussed the role of Ornithine Phenylacetate in reducing the arterial ammonia levels in patients with liver failure via modulating glutamine levels. This imposes a promising role for glycine in the pathogenesis of HE which merits further investigations.

    CAS  PubMed  Google Scholar 

  101. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med. 2007;356:2282–92.

    CAS  PubMed  Google Scholar 

  102. • Pena-Quintana L, Llarena M, Reyes-Suarez D, Aldamiz-Echevarria L. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer Adherence. 2017;11:1489–96. Authors discussed recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Analysis for the most recent studies showed improved compliance, efficacy, and safety with this new product.

    PubMed  PubMed Central  Google Scholar 

  103. Newmark HL, Young CW. Butyrate and phenylacetate as differentiating agents: practical problems and opportunities. J Cell Biochem Suppl. 1995;22:247–53.

    CAS  PubMed  Google Scholar 

  104. Guffon N, Kibleur Y, Copalu W, Tissen C, Breitkreutz J. Developing a new formulation of sodium phenylbutyrate. Arch Dis Child. 2012;97(12):1081–5.

    PubMed  Google Scholar 

  105. McGuire BM, Zupanets IA, Lowe ME, et al. Pharmacology and safety of glycerol phenylbutyrate in healthy adults and adults with cirrhosis. Hepatology. 2010;51(6):2077–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Weiss N, Tripon S, Lodey M, et al. Treating hepatic encephalopathy in cirrhotic patients admitted to ICU with sodium phenylbutyrate (PB): a preliminary study. Fundam Clin Pharmacol. 2018;32(2):209–15. This is a prospective matched control data that aimed to assess the benefits of sodium PB in cirrhotic patients admitted to ICU for overt HE. The authors assessed the following outcomes: ammonia levels decrease, neurological improvement, and survival. They have found that sodium PB could be effective in reducing ammonia levels as well as in improving neurological status and ICU survival.

    CAS  PubMed  Google Scholar 

  107. Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev. 2015;90:55–68.

    CAS  PubMed  Google Scholar 

  108. Rose C, Michalak A, Pannunzio P, Therrien G, Quack G, Kircheis G, et al. L-ornithine-L-aspartate in experimental portal-systemic encephalopathy: therapeutic efficacy and mechanism of action. Metab Brain Dis. 1998;13(2):147–57.

    CAS  PubMed  Google Scholar 

  109. Alvares-da-Silva MR, de Araujo A, Vicenzi JR, da Silva GV, Oliveira FB, Schacher F, et al. Oral L-ornithine-L-aspartate in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled trial. Hepatol Res. 2014;44:956–63.

    CAS  PubMed  Google Scholar 

  110. Mittal VV, Sharma BC, Sharma P, Sarin SK. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2011;23(8):725–32.

    CAS  PubMed  Google Scholar 

  111. Kircheis G, Nilius R, Held H, et al. Therapeutic efficacy of L-ornithine-L-aspartate infusions in patients with cirrhosis and hepatic encephalopathy: results of a placebo-controlled, double-blind study. Hepatology. 1997;25(6):1351–60.

    CAS  PubMed  Google Scholar 

  112. Stauch S, Kircheis G, Adler G, Beckh K, Ditschuneit H, Görtelmeyer R, et al. Oral L-ornithine-L-aspartate therapy of chronic hepatic encephalopathy: resultsof a placebo-controlled double-blind study. J J Hepatol. 1998;28(5):856–64.

    CAS  Google Scholar 

  113. Jiang Q, Jiang XH, Zheng MH, Chen YP. L-Ornithine-l-aspartate in the management of hepatic encephalopathy: a meta-analysis. J Gastroenterol Hepatol. 2009;24:9–14.

    CAS  PubMed  Google Scholar 

  114. Daniotti M, la Marca G, Fiorini P, Filippi L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int J Gen Med. 2011;4:21–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kasapkara CS, Kanğın M, Taş FF, et al. Unusual cause of hyperammonemia in two cases with short-term and long-term valproate therapy successfully treated by single dose carglumic acid. J Pediatr Neurosci. 2013;8(3):250–2.

    PubMed  PubMed Central  Google Scholar 

  116. Kose E, Kuyum P, Aksoy B, Häberle J, Arslan N, Ozturk Y. First report of carglumic acid in a patient with citrullinemia type 1 (argininosuccinate synthetase deficiency). J Clin Pharm Ther. 2018;43(1):124–8.

    CAS  PubMed  Google Scholar 

  117. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology. 2004;39(5):1441–9.

    PubMed  Google Scholar 

  118. Effect of antibiotics, prebiotics and probiotics in treatment forhepatic encephalopathy. Med. Hypotheses 2005, 64(1):64–68.

  119. McGee RG, Bakens A, Wiley K. Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev. 2011;11:CD008716.

    Google Scholar 

  120. Dalal R, McGee RG, Riordan SM, et al. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;2:CD008716.

    PubMed  Google Scholar 

  121. Dhiman RK, Rana B, Agrawal S, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology. 2014;147(6):1327–37.e3.

    CAS  PubMed  Google Scholar 

  122. Chapman TM, Plosker GL, Figgitt DP. VSL#3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases. Drugs. 2006;66(10):1371–87.

    CAS  PubMed  Google Scholar 

  123. Takuma Y, Nouso K, Makino Y, Hayashi M, Takahashi H. Clinical trial: oral zinc in hepatic encephalopathy. Aliment Pharmacol Ther. 2010;32(9):1080–90.

    CAS  PubMed  Google Scholar 

  124. Marchesini G, Fabbri A, Bianchi G, Brizi M, Zoli M. Zinc supplementation and amino acid-nitrogen metabolism in patients with advanced cirrhosis. Hepatology. 1996;23(5):1084–92.

    CAS  PubMed  Google Scholar 

  125. Riggio O, Ariosto F, Merli M, Caschera M, Zullo A, Balducci G, et al. Short-term oral zinc supplementation does not improve chronic hepatic encephalopathy. Results of a double-blind crossover trial. Dig Dis Sci. 1991;36(9):1204–8.

    CAS  PubMed  Google Scholar 

  126. Bresci G, Parisi G, Banti S. Management of hepatic encephalopathy with oral zinc supplementation: a long-term treatment. Eur J Med. 1993;2(7):414–6.

    CAS  PubMed  Google Scholar 

  127. Reding P, Duchateau J, Bataille C. Oral zinc supplementation improves hepatic encephalopathy. Results of a randomised controlled trial. Lancet. 1984;2(8401):493–5.

    CAS  PubMed  Google Scholar 

  128. Katayama K, Saito M, Kawaguchi K, et al. Effect of zinc on liver cirrhosis with hyperammonemia: a preliminary randomized, placebo-controlled double-blind trial. Nutrition. 2014;30(11–12):1409–14.

    CAS  PubMed  Google Scholar 

  129. Malaguarnera M. Acetyl-L-carnitine in hepatic encephalopathy. Metab Brain Dis. 2013;28(2):193–9.

    CAS  PubMed  Google Scholar 

  130. Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci. 2004;1033:30–41.

    CAS  PubMed  Google Scholar 

  131. Gidal BE, Inglese CM, Meyer JF, Pitterle ME, Antonopolous J, Rust RS. Diet- and valproate-induced transient hyperammonemia: effect of L-carnitine. Pediatr Neurol. 1997;16(4):301–5.

    CAS  PubMed  Google Scholar 

  132. Jiang Q, Jiang G, Shi KQ, Cai H, Wang YX, Zheng MH. Oral acetyl-L-carnitine treatment in hepatic encephalopathy: view of evidence-based medicine. Ann Hepatol. 2013;12(5):803–9.

    CAS  PubMed  Google Scholar 

  133. Summar ML, Dobbelaere D, Brusilow S, Lee B. Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicentre study of acute hyperammonaemic episodes. Acta Paediatr. 2008;97(10):1420–5.

    PubMed  PubMed Central  Google Scholar 

  134. Legras A, Labarthe F, Maillot F, Garrigue MA, Kouatchet A, Ogier de Baulny H. Late diagnosis of ornithine transcarbamylase defect in three related female patients: polymorphic presentations. Crit Care Med. 2002;30(1):241–4.

    PubMed  Google Scholar 

  135. Wilnai Y, Blumenfeld YJ, Cusmano K, Hintz SR, Alcorn D, Benitz WE, et al. Prenatal treatment of ornithine transcarbamylase deficiency. Mol Genet Metab. 2018;123(3):297–300.

    CAS  PubMed  Google Scholar 

  136. Jalan R, Wright G, Davies NA, Hodges SJ. L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses. 2007;69(5):1064–9.

    CAS  PubMed  Google Scholar 

  137. Ventura-Cots M, Arranz JA, Simón-Talero M, Torrens M, Blanco A, Riudor E, et al. Safety of ornithine phenylacetate in cirrhotic decompensated patients: an open-label, dose-escalating, single-cohort study. J Clin Gastroenterol. 2013;47(10):881–7.

    CAS  PubMed  Google Scholar 

  138. • Ventura-Cots M, Concepción M, Arranz JA, et al. Impact of ornithine phenylacetate (OCR-002) in lowering plasma ammonia after upper gastrointestinal bleeding in cirrhotic patients. Therap Adv Gastroenterol. 2016;9(6):823–35. This is a prospective study that aimed to study the effect of ornithine phenylacetate on plasma ammonia levels after upper GI bleed in patients with cirrhosis. They included 38 patients in this study and found no difference between the treatment arm as compared to the glucosaline arm in venous plasma ammonia level at 24hrs after treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Montet J, Salmon L, Caroli-Bosc FX, et al. L-arginine infusion protects against hyperammonemia and hepatic encephalopathy in cirrhotic patients with variceal haemorrhage. Gastroenterology. 2000;118(4):A978.

    Google Scholar 

  140. Campollo O, Sprengers D, McIntyre N. The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev Investig Clin. 1992;44(4):513–8.

    CAS  Google Scholar 

  141. Liu J, Lkhagva E, Chung HJ. The pharmabiotic approach to treat hyperammonemia. Nutrients 2018 ;10(2).

    PubMed Central  Google Scholar 

  142. Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. World J Gastroenterol. 2013;19(43):7620–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Frazier TH, Wheeler BE, McClain CJ, Cave M. Liver disease. In: Mueller CM,ed. The A.S.P.E.N. adult nutrition support core curriculum. Silver Spring, MD: American Society for Parenteral and Enteral Nutrition; 2012:454–471.

  144. Freund H, Hoover HC Jr, Atamian S, et al. Infusion of the branched chain amino acids in postoperative patients. Anticatabolic properties. Ann Surg. 1979;190(1):18–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Phys. 1992;263(5 Pt 1):E928–34.

    CAS  Google Scholar 

  146. • Gluud LL, Dam G, Les I, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5:CD001939. Meta-analysis for 16 studies that included 827 patients with HE who were treated with oral and intravenous BCAA. No difference was shown in mortality in a random-effects meta-analysis. However, a beneficial effect of BCAA was noticed on hepatic encephalopathy resolution but with increased risk of nausea and vomiting.

    PubMed  Google Scholar 

  147. Marchesini G, Dioguardi FS, Bianchi GP, Zoli M, Bellati G, Roffi L, et al. Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol. 1990;11(1):92–101.

    CAS  PubMed  Google Scholar 

  148. Jalan R, Kapoor D. Enhanced renal ammonia excretion following volume expansion in patients with well compensated cirrhosis of the liver. Gut. 2003;52(7):1041–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jalan R, Kapoor D. Reversal of diuretic-induced hepatic encephalopathy with infusion of albumin but not colloid. Clin Sci (Lond). 2004;106(5):467–74.

    CAS  Google Scholar 

  150. van Straten G, de Sain-van der Velden MGM, van Geijlswijk IM, Favier RP, Mesu SJ, Holwerda-Loof NE, et al. Saline is as effective as nitrogen scavengers for treatment of hyperammonemia. Sci Rep. 2017;7(1):13112.

    PubMed  PubMed Central  Google Scholar 

  151. Bajaj JS, Sheikh MY, Chojkier M, et al. AST-120(spherical carbon adsorbent) in covert hepatic encephalopathy: results of the ASTUTE trial. J Hepatol. 2013;58:S84.

    Google Scholar 

  152. Ampuero J, Ranchal I, Nuñez D, et al. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy. PLoS One. 2012;7(11):e49279.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Mitzner SR. Extracorporeal liver support-albumin dialysis with the Molecular Adsorbent Recirculating System (MARS). Ann Hepatol. 2011;10(Suppl 1):S21–8.

    PubMed  Google Scholar 

  154. Bañares R, Catalina MV, Vaquero J. Molecular adsorbent recirculating system and bioartificial devices for liver failure. Clin Liver Dis. 2014;18(4):945–56.

    PubMed  Google Scholar 

  155. Lee EK, Hu C, Bhargava R, Rozengurt N, Stout D, Grody WW, et al. Long-term survival of the juvenile lethal arginase-deficient mouse with AAV gene therapy. Mol Ther. 2012;20(10):1844–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sin YY, Price PR, Ballantyne LL, et al. Proof-of-concept gene editing for the murine model of inducible arginase-1 deficiency. Sci Rep. 2017;7(1):2585.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulrahman Alshaya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacology of Acute Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshaya, A., Fanikos, J. & DeMaio, E. Intravenous and Oral Hyperammonemia Management. Curr Emerg Hosp Med Rep 6, 182–193 (2018). https://doi.org/10.1007/s40138-018-0174-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40138-018-0174-5

Keywords

Navigation