Skip to main content

Advertisement

Log in

Brain Injury in the Preterm and Term Neonate

  • Neuroimaging (B Soares, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Neonatal brain injury results from a complex interplay of maternal and perinatal factors, and can be challenging to diagnose from both clinical and radiologic perspectives. Depending on infant age and severity of insult, various types of brain injury can result. We will discuss the benefits and disadvantages of different imaging modalities: US, CT, MRI, PET, and SPECT. Focusing on MRI, we will discuss special considerations for neonates, including clinical stabilization, technical challenges, and advanced imaging approaches such as ASL, MRS, and SWI. In the remainder of the article, we will review the pathophysiology and MR imaging patterns of brain injury in preterm and term infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AA:

Amino acids

ADC:

Apparent diffusion coefficient

ASL:

Arterial spin labeling

CBF:

Cerebral blood flow

CbH:

Cerebellar hemorrhage

Cho:

Choline

Cr:

Creatine

CT:

Computed tomography

DWI:

Diffusion-weighted imaging

DTI:

Diffusion tensor imaging

EGL:

External granular layer

FA:

Fractional anisotropy

FDG:

Fluorodeoxyglucose

Glx:

Glutamate-glutamine

HIE:

Hypoxic-ischemic encephalopathy

IGL:

Internal granular layer

IVH:

Intraventricular hemorrhage

Lac:

Lactate

Lip:

Lipids

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MRS:

MR spectroscopy

mI:

Myo-inositol

ms:

Milliseconds

MT:

Magnetization transfer

NAA:

N-acetylaspartate

NIRS:

Near-infrared spectroscopy

PET:

Positron emission tomography

PLIC:

Posterior limb of internal capsule

ppm:

Parts per million

PVL:

Periventricular leukomalacia

SNR:

Signal-to-noise ratio

SPECT:

Single positron emission tomography

SWI:

Susceptibility-weighted imaging

TE:

Time to echo

US:

Ultrasound

VM:

Ventriculomegaly

WMI:

White matter injury

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351:1985–95.

    Article  CAS  PubMed  Google Scholar 

  2. Thornton C, Rousset CI, Kichev A, Miyakuni Y, Vontell R, Baburamani AA, Fleiss B, Gressens P, Hagberg H. Molecular mechanisms of neonatal brain injury. Neurol Res Int. 2012;. doi:10.1155/2012/506320.

    PubMed  PubMed Central  Google Scholar 

  3. Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166(6):558–66.

    Article  PubMed  Google Scholar 

  4. Ment LR, Bada HS, Barnes P, Grant PE, Hirtz D, Papile LA, Pinto-Martin J, Rivkin M, Slovis TL. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;58(12):1726–38.

    Article  CAS  PubMed  Google Scholar 

  5. Miller S, Ferriero D, Barkovich AJ, Silverstein F. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2002;59(10):1663 author reply 1663-4.

    Article  PubMed  Google Scholar 

  6. Miller SP, Cozzio CC, Goldstein RB, Ferriero DM, Partridge JC, Vigneron DB, Barkovich AJ. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol. 2003;24(8):1661–9.

    PubMed  Google Scholar 

  7. • de Vries LS, Benders MJ, Groenendaal F. Imaging the premature brain: ultrasound or MRI? Neuroradiology. 2013;55 Suppl 2:13–22. This article discusses the complementary roles of US in MRI in neonatal neuroimaging, advantages/disadvantages of each modality, and recommendations for best utilization.

  8. • Dinan D, Daneman A, Guimaraes CV. Easily overlooked sonographic findings in the evaluation of neonatal encephalopathy: lessons learned from magnetic resonance imaging. Semin Ultrasound CT MR. 2014;35(6):627–51. This article compares the findings of HIE on US and MR, and points out subtle findings that can often be missed at US.

  9. • Epelman M, Daneman A, Chauvin N, et al. Head ultrasound and MR imaging in the evaluation of neonatal encephalopathy: competitive or complementary imaging studies? Magn Reson Imaging Clin N Am. 2012;20(1):93–115. This article discusses the benefits and disadvantages of US in detection and follow-up of HIE, with focus on subtle abnormalities that often progress to MR.

  10. • Arthurs OJ, Edwards A, Austin T, et al. The challenges of neonatal magnetic resonance imaging. Pediatr Radiol. 2012;42(10):1183–94. This article discusses the practical challenges of neonatal MRI, including both clinical and technical considerations.

  11. Ditchfield M. 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol. 2008;68(2):309–19.

    Article  PubMed  Google Scholar 

  12. •• Plaisier A, Govaert P, Lequin MH, et al. Optimal timing of cerebral MRI in preterm infants to predict long-term neurodevelopmental outcome: a systematic review. AJNR Am J Neuroradiol. 2014;35(5):841–7. This article discusses the relevance of MRI findings in preterm infants on early scans versus term-equivalent age.

  13. Bonifacio SL, Glass HC, Vanderpluym J, Agrawal AT, Xu D, Barkovich AJ, Ferriero DM. Perinatal events and early magnetic resonance imaging in therapeutic hypothermia. J Pediatr. 2011;158(3):360–5.

    Article  PubMed  Google Scholar 

  14. Barkovich AJ, Latal-Hajnal B, Partridge JC, Sola A, Ferriero DM. MR contrast enhancement of the normal neonatal brain. AJNR Am J Neuroradiol. 1997;18(9):1713–7.

    CAS  PubMed  Google Scholar 

  15. • Stanescu L, Ishak GE, Khanna PC, et al. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics. 2013;33(5):1279–303. This article discusses the applications of PET in pediatric neuroimaging with MR correlation.

  16. Barkovich AJ. MR imaging of the neonatal brain. Neuroimaging Clin N Am. 2006;16(1):117–35.

    Article  CAS  PubMed  Google Scholar 

  17. El-Dib M, Massaro AN, Bulas D, et al. Neuroimaging and neurodevelopmental outcome of premature infants. Am J Perinatol. 2010;27(10):803–18.

    Article  PubMed  Google Scholar 

  18. •• Kwon SH, Vasung L, Ment LR, et al. The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. Clin Perinatol. 2014;41(1):257–83. This article discusses the predictive value of conventional and advanced MRI techniques for prediction of neurodevelopmental outcome following preterm brain injury.

  19. Mathur AM, Neil JJ, Inder TE. Understanding brain injury and neurodevelopmental disabilities in the preterm infant: the evolving role of advanced magnetic resonance imaging. Semin Perinatol. 2010;34(1):57–66.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Panigrahy A, Borzage M, Blüml S. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain. Semin Perinatol. 2010;34(1):3–19.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burstein J, Papile LA, Burstein R. Intraventricular hemorrhage and hydrocephalus in premature newborns: a prospective study with CT. AJR Am J Roentgenol. 1979;132(4):631–5.

    Article  CAS  PubMed  Google Scholar 

  22. • Benders MJ, Kersbergen KJ, de Vries LS. Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol. 2014;41(1):69–82. This article discusses the characteristic imaging findings of preterm birth injury including white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage.

  23. •• Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15. This article reviews the body of research supporting the role of the cerebellum in cognition, from neuroimaging to animal studies and molecular neurobiology.

  24. Tam EW, Rosenbluth G, Rogers EE, Ferriero DM, Glidden D, Goldstein RB, Glass HC, Piecuch RE, Barkovich AJ. Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr. 2011;158(2):245–50.

    Article  PubMed  Google Scholar 

  25. • Kim H, Gano D, Ho MH, Guo XM, Unzueta A, Hess C, Ferriero DM, Xu D, Barkovich AJ. Hindbrain regional growth in preterm newborns and its impairment in relation to brain injury. Human Brain Mapp. 2015;37:678–88. This article discusses the incidence of cerebellar hemorrhage on 3T MRI in preterm infants, and proposes a clinical scoring system that is correlated with morphometric growth patterns.

  26. • Melbourne A, Kendall GS, Cardoso MJ. Preterm birth affects the developmental synergy between cortical folding and cortical connectivity observed on multimodal MRI. Neuroimage. 2014;89:23–34. This article discusses the effects of preterm birth on cortical sulcation and white matter connectivity.

  27. • Tusor N, Arichi T, Counsell SJ, et al. Brain development in preterm infants assessed using advanced MRI techniques. Clin Perinatol. 2014;41(1):25–45. This article discusses structural DTI and functional fMRI applications in preterm brain injury.

  28. Arzoumanian Y, Mirmiran M, Barnes PD, et al. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradiol. 2003;24(8):1646–53.

    CAS  PubMed  Google Scholar 

  29. Gaglioti P, Danelon D, Bontempo S, Mombrò M, Cardaropoli S, Todros T. Fetal cerebral ventriculomegaly: outcome in 176 cases. Ultrasound Obstet Gynecol. 2005;25(4):372–7.

    Article  CAS  PubMed  Google Scholar 

  30. Heinz ER, Provenzale JM. Imaging findings in neonatal hypoxia: a practical review. AJR Am J Roentgenol. 2009;192(1):41–7.

    Article  PubMed  Google Scholar 

  31. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, Ferriero DM. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19(1):143–9.

    CAS  PubMed  Google Scholar 

  32. Shroff MM, Soares-Fernandes JP, Whyte H, et al. MR imaging for diagnostic evaluation of encephalopathy in the newborn. Radiographics. 2010;30(3):763–80.

    Article  PubMed  Google Scholar 

  33. Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics. 2006;26(Suppl 1):S159–72.

    Article  PubMed  Google Scholar 

  34. de Vries LS, Groenendaal F. Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology. 2010;52(6):555–66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang BY, Castillo M. Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics. 2008;28(2):417–39.

    Article  PubMed  Google Scholar 

  36. Barkovich AJ, Westmark KD, Bedi HS, et al. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol. 2001;22(9):1786–94.

    CAS  PubMed  Google Scholar 

  37. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM. Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol. 1995;16(3):427–38.

    CAS  PubMed  Google Scholar 

  38. Barkovich AJ, Miller SP, Bartha A, Newton N, Hamrick SE, Mukherjee P, Glenn OA, Xu D, Partridge JC, Ferriero DM, Vigneron DB. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol. 2006;27(3):533–47.

    CAS  PubMed  Google Scholar 

  39. • Cauley KA, Filippi CG. Apparent diffusion coefficient histogram analysis of neonatal hypoxic-ischemic encephalopathy. Pediatr Radiol. 2014;44(6):738–46. This article correlates 2D histograms of ADC maps with gestational age at birth and severity of HIE.

  40. Rodrigues K, Grant PE. Diffusion-weighted imaging in neonates. Neuroimaging Clin N Am. 2011;21(1):127–51.

    Article  PubMed  Google Scholar 

  41. Chan KC, Khong PL, Lau HF, et al. Late measures of microstructural alterations in severe neonatal hypoxic-ischemic encephalopathy by MR diffusion tensor imaging. Int J Dev Neurosci. 2009;27(6):607–15.

    Article  PubMed  Google Scholar 

  42. Dağ Y, Firat AK, Karakaş HM, et al. Clinical outcomes of neonatal hypoxic ischemic encephalopathy evaluated with diffusion-weighted magnetic resonance imaging. Diagn Interv Radiol. 2006;12(3):109–14.

    PubMed  Google Scholar 

  43. Brissaud O, Amirault M, Villega F, et al. Efficiency of fractional anisotropy and apparent diffusion coefficient on diffusion tensor imaging in prognosis of neonates with hypoxic-ischemic encephalopathy: a methodologic prospective pilot study. AJNR Am J Neuroradiol. 2010;31(2):282–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wintermark P, Hansen A, Gregas MC, et al. Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol. 2011;32(11):2023–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wintermark P, Moessinger AC, Gudinchet F, Meuli R. Temporal evolution of MR perfusion in neonatal hypoxic-ischemic encephalopathy. J Magn Reson Imaging. 2008;27(6):1229–34. doi:10.1002/jmri.21379.

    Article  PubMed  Google Scholar 

  46. •• De Vis JB, Hendrikse J, Petersen ET, et al. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol. 2015;25(1):113–21. This article discusses the added value of ASL and MRS over conventional MRI and DWI in prediction of neurodevelopmental outcome following HIE.

  47. • Bonifacio SL, Saporta A, Glass HC, Lee P, Glidden DV, Ferriero DM, Barkovich AJ, Xu D. Therapeutic hypothermia for neonatal encephalopathy results in improved microstructure and metabolism in the deep gray nuclei. AJNR Am J Neuroradiol. 2012;33(11):2050–5. This paper discusses ADC and MRS as biomarkers for HIE, with significant quantitative differences compared to controls following hypothermia.

  48. •• Ancora G, Testa C, Grandi S, et al. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling. Neuroradiology. 2013;55(8):1017–25. This article discusses the superiority of 1H-MRS and DTI in prognostication of HIE patient outcomes, even in the presence of hypothermia.

  49. Ancora G, Soffritti S, Lodi R, et al. A combined a-EEG and MR spectroscopy study in term newborns with hypoxic-ischemic encephalopathy. Brain Dev. 2010;32(10):835–42.

    Article  PubMed  Google Scholar 

  50. Arrigoni F, Parazzini C, Righini A, et al. Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol. 2011;32(11):2030–6.

    Article  CAS  PubMed  Google Scholar 

  51. Panigrahy A, Blüml S, et al. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy. Top Magn Reson Imaging. 2007;18(1):3–29.

    Article  PubMed  Google Scholar 

  52. Ramenghi LA, Rutherford M, Fumagalli M, et al. Neonatal neuroimaging: going beyond the pictures. Early Hum Dev. 2009;85(10 Suppl):S75–7.

    Article  PubMed  Google Scholar 

  53. Ho et al. Preterm brain injury at 3T: association of imaging scores with cerebellar growth and neurological outcome. Chicago, IL: Radiological Society of North America; 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai-Lan Ho.

Ethics declarations

Conflict of Interest

Mai-Lan Ho, Alice C. Patton, David R. DeLone, Hosung Kim, Julie R. Gilbertson, Joel Felmlee, and Robert E. Watson each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, ML., Patton, A.C., DeLone, D.R. et al. Brain Injury in the Preterm and Term Neonate. Curr Radiol Rep 4, 39 (2016). https://doi.org/10.1007/s40134-016-0161-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0161-0

Keywords

Navigation