Skip to main content
Log in

Understanding Genetic Test Results in Childhood Epilepsies

  • Neurology (D Stephenson, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

During the last 5 years, the number of genes identified as causes of childhood epilepsies has increased significantly. Within this review, the current state of knowledge, rationale for genetic testing, and emerging issues and controversies in the field will be discussed.

Recent Findings

Modern genomic technologies, commonly referred to as next-generation sequencing or massive parallel sequencing approaches, have enabled the discovery of more than 30 novel genes associated with childhood epilepsies, mainly in epileptic encephalopathies, which are characterized by developmental delay and severe and often intractable epilepsy. In patients with early-onset severe epilepsies, explanatory genetic findings can be identified in up to 30% of patients. The most common genes identified in patients include SCN1A, SCN2A, CDKL5, and STXBP1.

Summary

Novel genetic technologies have revolutionized our understanding of early-onset epilepsies and a molecular diagnosis can be found in a significant number of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guerrini R. Epilepsy in children. Lancet. 2006;367(9509):499–524.

    Article  PubMed  Google Scholar 

  2. Epi KC. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457–67.

    Article  Google Scholar 

  3. Ng PC, et al. Genetic variation in an individual human exome. PLoS Genet. 2008;4(8):e1000160.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ng SB, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Claes L, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68(6):1327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51(9):1650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harkin LA, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain. 2007;130(Pt 3):843–52.

    Article  PubMed  Google Scholar 

  8. Moller RS, Dahl HA, Helbig I. The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diagn. 2015;15(12):1531–8.

    Article  PubMed  Google Scholar 

  9. Helbig I. New technologies in molecular genetics: the impact on epilepsy research. Prog Brain Res. 2014;213:253–78.

    Article  PubMed  Google Scholar 

  10. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci. 2014;17(6):764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Helbig KL, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med. 2016;18(9):898–905.

    Article  CAS  PubMed  Google Scholar 

  13. Trump N, et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet. 2016;53(5):310–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Damaj L, et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet. 2015;23(11):1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Howell KB, et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85(11):958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura K, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81(11):992–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rehm HL, et al. ClinGen—the clinical genome resource. N Engl J Med. 2015;372(23):2235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helbig I, Tayoun AA. Understanding genotypes and phenotypes in epileptic encephalopathies. Mol Syndromol. 2016;7(4):172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allen AS, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21.

    Article  CAS  PubMed  Google Scholar 

  21. EuroEpinomics-RES Consortium. Epilepsy phenome/genome project, and Epi4K_Consortium, De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95(4):360–70.

    Article  Google Scholar 

  22. Ferraro L, Pollard JR, Helbig I. Attitudes toward epilepsy genetics testing among adult and pediatric epileptologists-results of a Q-PULSE survey. Epilepsy Curr. 2016;16(1):46–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Claes L, et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat. 2003;21(6):615–21.

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg-Stern H, et al. Broad phenotypic heterogeneity due to a novel SCN1A mutation in a family with genetic epilepsy with febrile seizures plus. J Child Neurol. 2014;29(2):221–6.

    Article  PubMed  Google Scholar 

  25. Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain. 1997;120(Pt 3):479–90.

    Article  PubMed  Google Scholar 

  26. Mulley JC, et al. SCN1A mutations and epilepsy. Hum Mutat. 2005;25(6):535–42.

    Article  CAS  PubMed  Google Scholar 

  27. Zuberi SM, et al. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology. 2011;76(7):594–600.

    Article  CAS  PubMed  Google Scholar 

  28. Kalscheuer VM, et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet. 2003;72(6):1401–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amir RE, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  30. Bahi-Buisson N, et al. The three stages of epilepsy in patients with CDKL5 mutations. Epilepsia. 2008;49(6):1027–37.

    Article  CAS  PubMed  Google Scholar 

  31. Fehr S, et al. There is variability in the attainment of developmental milestones in the CDKL5 disorder. J Neurodev Disord. 2015;7(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saitsu H, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40(6):782–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gburek-Augustat J, et al. Epilepsy is not a mandatory feature of STXBP1 associated ataxia-tremor-retardation syndrome. Eur J Paediatr Neurol. 2016;20(4):661–5.

    Article  PubMed  Google Scholar 

  34. Stamberger H, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86(10):954–62.

    Article  CAS  PubMed  Google Scholar 

  35. Nabbout R, et al. Encephalopathy in children with Dravet syndrome is not a pure consequence of epilepsy. Orphanet J Rare Dis. 2013;8:176.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reif PS, et al. Precision medicine in genetic epilepsies: break of dawn? Expert Rev Neurother. 2016:1–12.

  37. Kalia, S.S., et al., Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med, 2016.

  38. Escayg A, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS + 2. Nat Genet. 2000;24(4):343–5.

    Article  CAS  PubMed  Google Scholar 

  39. Heron SE, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet. 2002;360(9336):851–2.

    Article  CAS  PubMed  Google Scholar 

  40. Veeramah KR, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heron SE, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–90.

    Article  CAS  PubMed  Google Scholar 

  42. Singh NA, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet. 1998;18(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  43. Reutlinger C, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia. 2010;51(9):1870–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Helbig.

Ethics declarations

Conflict of Interest

Ingo Helbig declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helbig, I. Understanding Genetic Test Results in Childhood Epilepsies. Curr Pediatr Rep 5, 24–29 (2017). https://doi.org/10.1007/s40124-017-0122-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-017-0122-y

Keywords

Navigation