Skip to main content

Advertisement

Log in

Inherited Neuromuscular Disorders: Presentation, Diagnosis, and Advances in Treatment

  • Neurology (D Stephenson, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews presentation of inherited neuromuscular disorders, including how to differentiate them from other causes of hypotonia and gross motor delay. Focus is on disorders that have, or may soon have, therapies to improve strength or slow down disease progression.

Recent Findings

With the recent explosion in genetic testing, the number of genes known to cause inherited neuromuscular disorders has increased exponentially in the last 10 years. Understanding the genetic basis has led to the potential for new therapeutics, aimed both at correcting the genetic deficiency and improving downstream factors to help improve overall function and health.

Summary

As new treatments for inherited neuromuscular disorders become available, the importance of early diagnosis will be more important than ever for some of these previously lethal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Richer LP, Shevell MI, Miller SP. Diagnostic profile of neonatal hypotonia: an 11-year study. Pediatr Neurol. 2001;25:32–7.

    Article  CAS  PubMed  Google Scholar 

  2. Paro-panjan D, Neubauer D (2008) Congenital hypotonia: 439–442

  3. Vasta I, Kinali M, Messina S, Guzzetta A, Kapellou O, Manzur A, Cowan F, Muntoni F, Mercuri E. Can clinical signs identify newborns with neuromuscular disorders? J Pediatr. 2005;146:73–9.

    Article  PubMed  Google Scholar 

  4. Prasad AN, Prasad C. Genetic evaluation of the floppy infant. Semin Fetal Neonatal Med. 2011;16:99–108.

    Article  CAS  PubMed  Google Scholar 

  5. Brockmann K, Becker P, Schreiber G, Neubert K, Brunner E, Bönnemann C. Sensitivity and specificity of qualitative muscle ultrasound in assessment of suspected neuromuscular disease in childhood. Neuromuscul Disord. 2007;17:517–23.

    Article  PubMed  Google Scholar 

  6. Pillen S, Arts IMP, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–93.

    Article  PubMed  Google Scholar 

  7. Quijano-Roy S, Avila-Smirnow D, Carlier RY, WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord. 2012;22(Suppl 2):S68–84.

    Article  PubMed  Google Scholar 

  8. Straub V, Carlier PG, Mercuri E. TREAT-NMD workshop: pattern recognition in genetic muscle diseases using muscle MRI: 25-26 February 2011, Rome, Italy. Neuromuscul Disord. 2012;22(Suppl 2):S42–53.

    Article  PubMed  Google Scholar 

  9. Klebe S, Stevanin G, Depienne C Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 171:505–30

  10. Grohmann K, Schuelke M, Diers A, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.

    Article  CAS  PubMed  Google Scholar 

  11. Harms MB, Ori-McKenney KM, Scoto M, et al. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology. 2012;78:1714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oates EC, Rossor AM, Hafezparast M, et al. Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet. 2013; doi:10.1016/j.ajhg.2013.04.018.

    PubMed  PubMed Central  Google Scholar 

  13. Peeters K, Litvinenko I, Asselbergh B, et al. Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. Am J Hum Genet. 2013; doi:10.1016/j.ajhg.2013.04.013.

    Google Scholar 

  14. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    Article  CAS  PubMed  Google Scholar 

  15. Ogino S, Leonard DGB, Rennert H, Wilson RB. Spinal muscular atrophy genetic testing experience at an academic medical center. J Mol Diagn. 2002;4:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Majumdar R, Rehana Z, Al Jumah M, Fetaini N. Spinal muscular atrophy carrier screening by multiplex polymerase chain reaction using dried blood spot on filter paper. Ann Hum Genet. 2005;69:216–21.

    Article  CAS  PubMed  Google Scholar 

  17. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70:358–68.

    Article  PubMed  Google Scholar 

  18. Swoboda KJ, Scott CB, Crawford TO, et al. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS One. 2010;5:e12140.

    Article  PubMed  PubMed Central  Google Scholar 

  19. •• Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86:890–7. Phase I study of nusinersen demonstrating safety, with initial support of efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28:271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dobrowolski SF, Pham HT, Downes FP, Prior TW, Naylor EW, Swoboda KJ. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin Chem. 2012;58:1033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin C-W, Kalb SJ, Yeh W-S. Delay in diagnosis of spinal muscular atrophy: a systematic literature review. Pediatr Neurol. 2015;53:293–300.

    Article  PubMed  Google Scholar 

  23. Jerath NU, Shy ME. Hereditary motor and sensory neuropathies: understanding molecular pathogenesis could lead to future treatment strategies. Biochim Biophys Acta. 2014;1852:667–78.

    Article  PubMed  Google Scholar 

  24. •• Engel AG, Shen X-M, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015;14:420–34. Review of multiple subtypes of congenital myasthenia with focus on special features and treatment implications.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kinali M, Beeson D, Pitt MC, et al. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol. 2008;201–202:6–12.

    Article  PubMed  Google Scholar 

  26. Milone M, Engel AG. Block of the endplate acetylcholine receptor channel by the sympathomimetic agents ephedrine, pseudoephedrine, and albuterol. Brain Res. 1996;740:346–52.

    Article  CAS  PubMed  Google Scholar 

  27. • Tsao C-Y. Effective treatment with albuterol in DOK7 congenital myasthenic syndrome in children. Pediatr Neurol. 2016;54:85–7. Albuterol can treat Dok7 congenital myasthenia reversing progressive weakness.

    Article  PubMed  Google Scholar 

  28. Schara U, Della Marina A, Abicht A. Congenital myasthenic syndromes: current diagnostic and therapeutic approaches. Neuropediatrics. 2012;43:184–93.

    Article  CAS  PubMed  Google Scholar 

  29. Bertrand AT, Chikhaoui K, Yaou RB, Bonne G. Clinical and genetic heterogeneity in laminopathies. Biochem Soc Trans. 2011;39:1687–92.

    Article  CAS  PubMed  Google Scholar 

  30. Bonnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24:289–311.

    Article  PubMed  PubMed Central  Google Scholar 

  31. •• North KN, Wang CH, Clarke N, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24:97–116. Distinguishing clinical, biopsy, and muscle imaging features of the congenital myopathies.

    Article  PubMed  Google Scholar 

  32. Colombo I, Scoto M, Manzur AY, et al. Congenital myopathies: natural history of a large pediatric cohort. Neurology. 2015;84:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thompson CE. Benign congenital hypotonia is not a diagnosis. Dev Med Child Neurol. 2002;44:283–4.

    Article  PubMed  Google Scholar 

  34. Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derdemezi J, Britt BA, Duff CL, Worton RG, MacLennan DH. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics. 1991;11:751–5.

    Article  CAS  PubMed  Google Scholar 

  35. Mitsuhashi S, Kang PB. Update on the genetics of limb girdle muscular dystrophy. Semin Pediatr Neurol. 2012;19:211–8.

    Article  PubMed  Google Scholar 

  36. Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135:513–21.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in Duchenne muscular dystrophy: data from the muscular dystrophy surveillance, tracking, and research network (MD STARnet). J Pediatr. 2009;155:380–5.

    Article  PubMed  Google Scholar 

  38. Ricotti V, Mandy WPL, Scoto M, Pane M, Deconinck N, Messina S, Mercuri E, Skuse DH, Muntoni F. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev Med Child Neurol. 2016;58:77–84.

    Article  PubMed  Google Scholar 

  39. Gloss D (2016) Practice guideline update summary: corticosteroid treatment of Duchenne muscular dystrophy report of the guideline development subcommittee of the American

  40. •• Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–87. Ataluren improved motor function, but primary endpoint of 6 minute walk test did not meet clinical significance.

    Article  CAS  PubMed  Google Scholar 

  41. •• Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E, Eteplirsen Study Group and Telethon Foundation DMD Italian Network. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79:257–71. Eteplirisen slowed loss of ambulation compared to untreated historical controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71:304–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Kichula.

Ethics declarations

Conflict of Interest

Elizabeth A Kichula has received institutional support for study participation from Ionis Pharmaceuticals outside of the submitted work and is on the advisory board of AveXis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kichula, E.A. Inherited Neuromuscular Disorders: Presentation, Diagnosis, and Advances in Treatment. Curr Pediatr Rep 5, 36–44 (2017). https://doi.org/10.1007/s40124-017-0118-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-017-0118-7

Keywords

Navigation