Skip to main content

Advertisement

Log in

Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency

  • Immunology (HB Gaspar, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Hematopoietic stem cell transplantation is an effective approach for the treatment of severe combined immunodeficiency (SCID). However, SCID is not a homogeneous disease, and the treatment required for successful transplantation varies significantly between SCID subtypes and the degree of HLA mismatch between the best available donor and the patient. Recent studies are beginning to more clearly define this heterogeneity and how outcomes may vary. With a more detailed understanding of SCID, new approaches can be developed to maximize immune reconstitution, while minimizing acute and long-term toxicities associated with chemotherapy conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Geha RS, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007;120:776–94.

    Article  PubMed Central  PubMed  Google Scholar 

  2. • Shearer WT et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the primary immune deficiency treatment consortium experience. J Allergy Clin Immunol. 2014;133:1092–8. Provides the rationale and detailed analysis of criteria for making a diagnosis of SCID.

  3. Kwan A, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.

    Article  PubMed  Google Scholar 

  4. Griffith LM, et al. Primary immune deficiency treatment consortium (PIDTC) report. J Allergy Clin Immunol. 2014;133:335–47.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49:25–43.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Buckley RH, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340:508–16.

    Article  CAS  PubMed  Google Scholar 

  7. Railey MD, Lokhnygina Y, Buckley RH. Long-term clinical outcome of patients with severe combined immunodeficiency who received related donor bone marrow transplants without pretransplant chemotherapy or post-transplant GVHD prophylaxis. J Pediatr. 2009;155:834–40.

    Article  PubMed Central  PubMed  Google Scholar 

  8. •• Pai SY et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med 2014;371:434–46. This is the most recent retrospective study of a multi-institutional (PIDTC) cohort of over 200 SCID patients. The impact of SCID type, infection status, age at transplant, donor type, and conditioning regimen on immune reconstitution, GVHD, and survival are reported in detail. It showed that transplantation prior to infection is essential to maximize likelihood of survival.

  9. Kwan A, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol. 2013;132:140–50.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Puck JM. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: the winner is T-cell receptor excision circles. J Allergy Clin Immunol. 2012;129:607–16.

    Article  PubMed Central  PubMed  Google Scholar 

  11. • Dvorak CC et al. The natural history of children with severe combined immunodeficiency: baseline features of the first fifty patients of the primary immune deficiency treatment consortium prospective study 6901. J Clin Immunol. 2013;33:1156–64. This report of the first 50 patients enrolled on the prospective multi-institutional (PIDTC) SCID study details the characteristics of SCID patients in the era of routine newborn screening and how this has affected the timing of HSCT.

  12. • Dvorak CC et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol 2014;134:935–43. This study of over 100 unconditioned SCID transplants reported the effects of SCID type, donor type, and serotherapy on outcomes including immune reconstitution, GVHD, and survival. It showed that unconditioned transplants using unrelated donors result in acceptable rates of GVHD and survival.

  13. Dvorak CC, et al. Megadose CD34(+) cell grafts improve recovery of T cell engraftment but not B cell immunity in patients with severe combined immunodeficiency disease undergoing haplocompatible nonmyeloablative transplantation. Biol Blood Marrow Transplant. 2008;14:1125–33.

    Article  CAS  PubMed  Google Scholar 

  14. • Buckley RH et al. Post-transplantation B cell function in different molecular types of SCID. J Clinical Immunol. 2013;33:96–110. This study provides a deeper analysis of how SCID type affects post-transplant immune reconstitution.

  15. Recher M, et al. IL-21 is the primary common gamma chain-binding cytokine required for human B-cell differentiation in vivo. Blood. 2011;118:6824–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mazzolari E, et al. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J Allergy Clin Immunol. 2007;120:892–9.

    Article  CAS  PubMed  Google Scholar 

  17. Grunebaum E, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006;295:508–18.

    Article  CAS  PubMed  Google Scholar 

  18. • Haddad E, Leroy S, Buckley RH. B-cell reconstitution for SCID: should a conditioning regimen be used in SCID treatment? J Allergy Clin Immunol. 2013;131:994–1000. This review discusses the advantages and disadvantages of using conditioning in patients with SCID.

  19. Cavazzana-Calvo M, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood. 2007;109:4575–81.

    Article  CAS  PubMed  Google Scholar 

  20. Sarzotti M, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol. 2003;170:2711–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rao K, et al. Improved survival after unrelated donor bone marrow transplantation in children with primary immunodeficiency using a reduced-intensity conditioning regimen. Blood. 2005;105:879–85.

    Article  CAS  PubMed  Google Scholar 

  22. Slatter MA, et al. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117:4367.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson LE, et al. Natural killer cell activity in chronic lymphocytic leukemia patients treated with fludarabine. Cancer Chemother Pharmacol. 1996;37:445–50.

    Article  CAS  PubMed  Google Scholar 

  24. Dvorak CC, et al. A trial of alemtuzumab adjunctive therapy in allogeneic hematopoietic cell transplantation with minimal conditioning for severe combined immunodeficiency. Pediatr Transplant. 2014;18:609.

    Article  CAS  PubMed  Google Scholar 

  25. Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99:872–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gaspar HB, et al. How I treat ADA deficiency. Blood. 2009;114:3524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Dvorak CC, Cowan MJ. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin North Am. 2010;30:125.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Fernandes JF, et al. Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood? Blood. 2012;119:2949–55.

    Article  CAS  PubMed  Google Scholar 

  29. Gluckman E, et al. Milestones in umbilical cord blood transplantation. Br J Haematol. 2011;154:441–7.

    Article  PubMed  Google Scholar 

  30. Gennery AR, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126:602–10.

    Article  PubMed  Google Scholar 

  31. Muller SM, et al. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. 2001;98:1847–51.

    Article  CAS  PubMed  Google Scholar 

  32. Palmer BE, Mack DG, Martin AK, Maier LA, Fontenot AP. CD57 expression correlates with alveolitis severity in subjects with beryllium-induced disease. J Allergy Clin Immunol. 2007;120:184–91.

    Article  CAS  PubMed  Google Scholar 

  33. Scaradavou A, Carrier C, Mollen N, Stevens C, Rubinstein P. Detection of maternal DNA in placental/umbilical cord blood by locus-specific amplification of the noninherited maternal HLA gene. Blood. 1996;88:1494–500.

    CAS  PubMed  Google Scholar 

  34. Knobloch C, Goldmann SF, Friedrich W. Limited T cell receptor diversity of transplacentally acquired maternal T cells in severe combined immunodeficiency. J Immunol. 1991;146:4157–64.

    CAS  PubMed  Google Scholar 

  35. Palmer K, et al. Unusual clinical and immunologic manifestations of transplacentally acquired maternal T cells in severe combined immunodeficiency. J Allergy Clin Immunol. 2007;120:423–8.

    Article  CAS  PubMed  Google Scholar 

  36. Gaspar HB, et al. How I treat severe combined immunodeficiency. Blood. 2013;122:3749–58.

    Article  CAS  PubMed  Google Scholar 

  37. Dror Y, et al. Immune reconstitution in severe combined immunodeficiency disease after lectin-treated, T-cell-depleted haplocompatible bone marrow transplantation. Blood. 1993;81:2021–30.

    CAS  PubMed  Google Scholar 

  38. Haddad E, et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood. 1998;91:3646–53.

    CAS  PubMed  Google Scholar 

  39. Long-Boyle JR, et al. High fludarabine exposure and relationship with treatment-related mortality after nonmyeloablative hematopoietic cell transplantation. Bone Marrow Transplant. 2011;46:20–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Antoine C, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet. 2003;361:553–60.

    Article  PubMed  Google Scholar 

  41. Neven B, et al. Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood. 2009;113:4114–24.

    Article  CAS  PubMed  Google Scholar 

  42. Schuetz C, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood. 2014;123:281–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kamani NR, et al. Malignancies after hematopoietic cell transplantation for primary immune deficiencies: a report from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2011;17:1783–9.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Eapen M, et al. Long-term survival and late deaths after hematopoietic cell transplantation for primary immunodeficiency diseases and inborn errors of metabolism. Biol Blood Marrow Transplant. 2012;18:1438–45.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Shah AJ, Kohn DB. Neurocognitive function of patients with severe combined immunodeficiency. Immunol Allergy Clin North Am. 2010;30:143–51.

    Article  PubMed  Google Scholar 

  46. Titman P, et al. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood. 2008;112:3907–13.

    Article  CAS  PubMed  Google Scholar 

  47. Walter AW, et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children’s Research Hospital. J Clin Oncol. 1999;17:3720–8.

    CAS  PubMed  Google Scholar 

  48. Mathisen SE, Glavin K, Lien L, Lagerlov P. Prevalence and risk factors for postpartum depressive symptoms in Argentina: a cross-sectional study. Int J Women’s Health. 2013;5:787.

    Article  Google Scholar 

  49. Lin M, et al. Long-term neurocognitive function of pediatric patients with severe combined immune deficiency (SCID): pre- and post-hematopoietic stem cell transplant (HSCT). J Clin Immunol. 2009;29:231–7.

    Article  PubMed  Google Scholar 

  50. Czechowicz A, Kraft D, Weissman IL, Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007;318:1296–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Straathof KC, et al. Haemopoietic stem-cell transplantation with antibody-based minimal-intensity conditioning: a phase 1/2 study. Lancet. 2009;374:912–20.

    Article  CAS  PubMed  Google Scholar 

  52. Hassan A, et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood. 2012;120:3615–24.

    Article  CAS  PubMed  Google Scholar 

  53. Honig M, et al. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood. 2007;109:3595–602.

    Article  PubMed  Google Scholar 

  54. O’Marcaigh AS, et al. Bone marrow transplantation for T-B- severe combined immunodeficiency disease in Athabascan-speaking native Americans. Bone Marrow Transplant. 2001;27:703–9.

    Article  PubMed  Google Scholar 

  55. Bertrand Y, et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the european society for immunodeficiency. J Pediatr. 1999;134:740–8.

    Article  CAS  PubMed  Google Scholar 

  56. Dalal I, et al. Matched unrelated bone marrow transplantation for combined immunodeficiency. Bone Marrow Transplant. 2000;25:613–21.

    Article  CAS  PubMed  Google Scholar 

  57. Knutsen AP, Wall DA. Umbilical cord blood transplantation in severe T-cell immunodeficiency disorders: two-year experience. J Clin Immunol. 2000;20:466–76.

    Article  CAS  PubMed  Google Scholar 

  58. Bhattacharya A, et al. Single centre experience of umbilical cord stem cell transplantation for primary immunodeficiency. Bone Marrow Transplant. 2005;36:295–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Mortan J. Cowan reports personal fees from Bluebird Bio, Inc. and served on the Scientific Advisory board for Exogen Bio, Inc. Christopher C. Dvorak reports personal fees from Bluebird Bio, Inc.  Justin T. Wahlstrom declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morton J. Cowan.

Additional information

This article is part of the Topical Collection on Immunology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlstrom, J.T., Dvorak, C.C. & Cowan, M.J. Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency. Curr Pediatr Rep 3, 1–10 (2015). https://doi.org/10.1007/s40124-014-0071-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-014-0071-7

Keywords

Navigation