Skip to main content
Log in

Well-posedness and asymptotic behavior of stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

This paper is concerned about stochastic convective Brinkman–Forchheimer (SCBF) equations subjected to multiplicative pure jump noise in bounded or periodic domains. Our first goal is to establish the existence of a pathwise unique strong solution satisfying the energy equality (Itô’s formula) to SCBF equations. We resolve the issue of the global solvability of SCBF equations, by using a monotonicity property of the linear and nonlinear operators and a stochastic generalization of the Minty–Browder technique. The major difficulty is that an Itô’s formula in infinite dimensions is not available for such systems. This difficulty is overcame by the technique of approximating functions using the elements of eigenspaces of the Stokes operator in such a way that the approximations are bounded and converge in both Sobolev and Lebesgue spaces simultaneously. Due to some technical difficulties, we discuss the global in time regularity results of such strong solutions in periodic domains only. Once the system is well-posed, we look for the asymptotic behavior of strong solutions. For large effective viscosity, the exponential stability results (in the mean square and pathwise sense) for stationary solutions is established. Moreover, a stabilization result of SCBF equations by using a multiplicative pure jump noise is also obtained. Finally, we prove the existence of a unique ergodic and strongly mixing invariant measure for SCBF equations subject to multiplicative pure jump noise, by using the exponential stability of strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albeverio, S., Brzeźniak, Z., Wu, J.-L.: Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients. J. Math. Anal. Appl. 371, 309–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S.N., de Oliveira, H.B.: The Navier–Stokes problem modified by an absorption term. Appl. Anal. 89(12), 1805–1825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, C.T., Trang, P.T.: On the 3D Kelvin–Voigt–Brinkman–Forchheimer equations in some unbounded domains. Nonlinear Anal. Theory Methods Appl. 89, 36–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, vol. 93. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)

    MATH  Google Scholar 

  6. Bessaih, H., Millet, A.: On stochastic modified 3D Navier–Stokes equations with anisotropic viscosity. J. Math. Anal. Appl. 462, 915–956 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brzeźniak, Z., Hausenblas, E., Zhu, J.: 2D stochastic Navier–Stokes equations driven by jump noise. Nonlinear Anal. 79, 122–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier–Stokes equations on \({R}^3\): the existence and the uniqueness of solutions and the existence of an invariant measure. J. Math. Fluid Mech. 22, 23 (2020)

    Article  MATH  MathSciNet  Google Scholar 

  9. Burkholder, D.L.: The best constant in the Davis inequality for the expectation of the martingale square function. Trans. Am. Math. Soc. 354(1), 91–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z., Jiu, Q.: Weak and Strong solutions for the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caraballo, T., Langa, J., Taniguchi, T.: The exponential behavior and stabilizability of stochastic 2D-Navier–Stokes equations. J. Differ. Equ. 179, 714–737 (2002)

    Article  MATH  Google Scholar 

  12. Chow, P.-L., Khasminskii, R.: Stationary solutions of nonlinear stochastic evolution equations. Stochast. Anal. Appl. 15, 671–699 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall/CRC, New York (2007)

    Book  MATH  Google Scholar 

  14. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  16. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  18. Davis, B.: On the integrability of the martingale square function. Israel J. Math. 8(2), 187–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Debussche, A.: Ergodicity results for the stochastic Navier–Stokes equations: an introduction. In: Topics in Mathematical Fluid Mechanics, Volume 2073 of the Series Lecture Notes in Mathematics. Springer, pp. 23–108 (2013)

  20. Dong, Z., Zhang,R.: 3D tamed Navier–Stokes equations driven by multiplicative Lévy noise: existence, uniqueness and large deviations. J. Math. Anal. Appl. 492(1), 124404 (2020)

  21. Dong, Z., Xie, Y.: Global solutions of stochastic 2D Navier–Stokes equations with Lévy noise. Sci. China Ser. A 52(7), 1497–1524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farwig, R., Kozono, H., Sohr, H.: An \(L^q\)-approach to Stokes and Navier–Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fefferman, C.L., Hajduk, K.W., Robinson, J.C.: Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces. arXiv:1904.03337

  24. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  25. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Fundamental Directions in Mathematical Fluid Mechanics. Advance in Mathematical Fluid Mechanics, pp. 11–70. Birkhaüser, Basel (2000)

  27. Gao, H., Liu, H.: Well-posedness and invariant measures for a class of stochastic 3D Navier–Stokes equations with damping driven by jump noise. J. Differ. Equ. 267, 5938–5975 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giga, Y., Miyakawa, T.: Solutions in \(L^r\) of the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 89(3), 267–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales II. Itô formula in Banach spaces. Stochastics 6(3–4), 153–173 (1982)

    Article  Google Scholar 

  30. Gyöngy, I., Siska, D.: Itô formula for processes taking values in intersection of finitely many Banach spaces. Stoch PDE Anal. Comput. 5, 428–455 (2017)

    Article  MATH  Google Scholar 

  31. Hajduk, K.W., Robinson, J.C.: Energy equality for the 3D critical convective Brinkman–Forchheimer equations. J. Differ. Equ. 263, 7141–7161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hajduk, K.W., Robinson, J.C., Sadowski, W.: Robustness of regularity for the 3D convective Brinkman–Forchheimer equations. J. Math. Anal. Appl. 500(1), 125058 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ichikawa, A.: Some inequalities for martingales and stochastic convolutions. Stochast. Anal. Appl. 4(3), 329–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kalantarov, V.K., Zelik, S.: Smooth attractors for the Brinkman–Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11, 2037–2054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kozono, H., Yanagisawa, T.: \(L^r\)-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58(4), 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kunita, H.: Stochastic Flows and Jump-Diffusions, Probability Theory and Stochastic Modelling, vol. 92. Springer, Singapore (2019)

    Book  MATH  Google Scholar 

  37. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  38. Liptser, R.S.: Strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, H., Gao, H.: Ergodicity and dynamics for the stochastic 3D Navier–Stokes equations with damping. Commun. Math. Sci. 16(1), 97–122 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, H., Gao, H.: Stochastic 3D Navier–Stokes equations with nonlinear damping: martingale solution, strong solution and small time LDP. In: Interdisciplinary Mathematical Sciences Stochastic PDEs and Modelling of Multiscale Complex System, vol. 2, pp. 9–36 (2019)

  41. Liu, H., Lin, L., Sun, C., Xiao, Q.: The exponential behavior and stabilizability of the stochastic 3D Navier–Stokes equations with damping. Rev. Math. Phys. 31(7), 1950023 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 254, 725–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255, 572–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Markowich, P.A., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model. Nonlinearity 29(4), 1292–1328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Marinelli, C., Röckner, M.: On the maximal inequalities of Burkholder. Davis Gundy Expositiones Mathematicae 34(1), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mandrekar, V., Rüdiger, B.: Stochastic Integration in Banach Spaces. Theory and Applications. Springer, New York (2015)

    MATH  Google Scholar 

  47. Manna, U., Mohan, M.T.: Shell model of turbulence perturbed by Lévy noise. Nonlinear Differ. Equ. Appl. 18(6), 615–648 (2011)

    Article  MATH  Google Scholar 

  48. Manna, U., Mohan, M.T.: Two-dimensional magneto-hydrodynamic system with jump processes: well posedness and invariant measures. Commun. Stoch. Anal. 7(1), 153–178 (2013)

    MathSciNet  Google Scholar 

  49. Manna, U., Mohan, M.T., Sritharan, S.S.: Stochastic non-resistive magnetohydrodynamic system with Lévy noise. Random Oper. Stochast. Equ. 25(3), 155–194 (2017)

    MATH  Google Scholar 

  50. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  51. Métivier, M.: Stochastic partial differential equations in infinite dimensional spaces. Quaderni, Scuola Normale Superiore, Pisa (1988)

  52. Menaldi, J.L., Sritharan, S.S.: Stochastic \(2\)-D Navier–Stokes equation. Appl. Math. Optim. 46, 31–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mohan, M.T., Sakthivel, K., Sritharan, S.S.: Ergodicity for the 3D stochastic Navier—Stokes equations perturbed by Lévy noise. Mathematische Nachrichten 292(5), 1056–1088 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mohan, M.T.: Deterministic and stochastic equations of motion arising in Oldroyd fluids of order one: existence, uniqueness, exponential stability and invariant measures. Stochast. Anal. Appl. 38(1), 1–61 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mohan, M.T., Sritharan, S.S.: Stochastic Navier–Stokes equation perturbed by Lévy noise with hereditary viscosity. Infinite dimensional analysis. Quant. Probab. Relat. Top. 22(1), 32 (2019)

    MATH  Google Scholar 

  56. Mohan, M.T.: On Convective Brinkman–Forchheimer Equations (Submitted)

  57. Mohan, M.T.: Stochastic convective Brinkman–Forchheimer equations (Submitted). arXiv:2007.09376

  58. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)

    Book  Google Scholar 

  59. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  60. Robinson, J.C., Sadowski, W.: A local smoothness criterion for solutions of the 3D Navier–Stokes equations. Rendiconti del Seminario Matematico della Universitá di Padova 131, 159–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  61. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations, Classical Theory. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  62. Robinson, J.C., Sadowski, W.: A local smoothness criterion for solutions of the 3D Navier–Stokes equations. Rend. Semin. Mat. Univ. Padova 131, 159–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Röckner, M., Zhang, X.: Tamed 3D Navier–Stokes equation: existence, uniqueness and regularity. Infinite dimensional analysis. Quant. Probab. Relat. Top. 12, 525–549 (2009)

    MATH  Google Scholar 

  64. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equation: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145, 211–267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Röckner, M., Zhang, T., Zhang, X.: Large deviations for stochastic tamed 3D Navier–Stokes equations. Appl. Math. Optim. 61, 267–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Röckner, M., Zhang, T.: Stochastic 3D tamed Navier–Stokes equations: existence, uniqueness and small time large deviations principles. J. Differ. Equ. 252, 716–744 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Simader, C., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes equation, Series in Advanced Mathematics Application Science, vol. 11, pp. 1–35. World Sci. Publ., River Edge (1992)

  68. Sharma, A.K., Khandelwal, M.K., Bera, P.: Finite amplitude analysis of non-isothermal parallel flow in a vertical channel filled with high permeable porous medium. J. Fluid Mech. 857, 469–507 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stochast. Process. Appl. 116, 1636–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  71. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edition. CBMS-NSF Regional Conference Series in Applied Mathematics (1995)

  72. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  73. You, B.: The existence of a random attractor for the three dimensional damped Navier–Stokes equations with additive noise. Stochast. Anal. Appl. 35(4), 691–700 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhang, Z., Wu, X., Lu, M.: On the uniqueness of strong solution to the incompressible Navier–Stokes equations with damping. J. Math. Anal. Appl. 377, 414–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Zhou, Y.: Regularity and uniqueness for the 3D incompressible Navier–Stokes equations with damping. Appl. Math. Lett. 25, 1822–1825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. T. Mohan would like to thank the Department of Science and Technology (DST), India for Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award (IFA17-MA110). The author would also like to thank Prof. J. C. Robinson, University of Warwick for useful discussions and providing the crucial reference [23]. The author sincerely would like to thank the reviewer for his/her valuable comments and suggestions which helped us to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manil T. Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, M.T. Well-posedness and asymptotic behavior of stochastic convective Brinkman–Forchheimer equations perturbed by pure jump noise. Stoch PDE: Anal Comp 10, 614–690 (2022). https://doi.org/10.1007/s40072-021-00207-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00207-9

Keywords

Mathematics Subject Classification

Navigation