Skip to main content

Advertisement

Log in

Effect of Yarn Linear Density on Static and Dynamic Mechanical Properties of Jute Yarn Reinforced Epoxy Composites

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

In today's scenario, due to environmental sustainability use of natural fibre is increased as reinforcement material in polymer composites. Herein, unidirectional jute yarn reinforced epoxy composites (JYREC) are prepared using hand lay-up technique. The novelty of the work is to study the effect of linear density varies from 4 to 12 lb/spyndle of jute yarn on the static and dynamic properties of the epoxy composite. The cross-section and microscopic morphologies of composite samples is investigated with the aid of optical microscope and SEM. The results show that with increase in the linear density; tensile strength (45.86 MPa), impact strength (9.41 kJ/m2) and storage modulus (5443.08 MPa) of the JYREC increases up to 8 lb/spyndle jute yarn after that downtrend is observed. The balanced combination of number of yarns in the composite for the same mass loading fraction, twist per inch and tenacity of individual jute yarn is responsible for the resultant properties of the composites. The effectiveness of interfacial attraction between the jute yarn and epoxy resin is conform by the DMA results. The results reveal that JYREC can be engineered for the automobile and building components such as portioning panels applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Bavoria, Int. J. Adv. Res. Sci. Com. Techol. 8, 521–526 (2021)

    Article  Google Scholar 

  2. A. Al Rashid, M.Y. Khalid, R. Imran, U. Ali, M. Koc, Materials 13, 3167 (2020)

    Article  Google Scholar 

  3. P. Balakrishnan, M.J. John, L. Pothen, M.S. Sreekala, S. Thomas, Advanced composite materials for aerospace engineering. (Elsevier, 2016) pp 365–383. https://doi.org/10.1016/B978-0-08-100037-3.00012-2

    Book  Google Scholar 

  4. Y. K. Kim, V. Chalivendra, Natural fibre composites (NFCs) for construction and automotive industries. in Handbook of natural fibres. (Elsevier, 2020) pp. 469–498. https://doi.org/10.1016/B978-0-12-818782-1.00014-6

    Chapter  Google Scholar 

  5. M.A. Al Faruque, M. Salauddin, M.M. Raihan, I.Z. Chowdhury, F. Ahmed, S.S. Shimo, J. Nat. Fibers. 19, 8006–8021 (2021)

    Article  Google Scholar 

  6. V. Chaudhary, F. Ahmad, Polym. Test. 91, 106792 (2020)

    Article  Google Scholar 

  7. N.H. Bhingare, S. Prakash, V.S. Jatti, Polym. Test. 80, 106142 (2019)

    Article  Google Scholar 

  8. A.D. La Rosa, A. Recca, A. Gagliano, J. Summerscales, A. Latteri, G. Cozzo, G. Cicala, Constr. Build. Mater. 55, 406–414 (2014)

    Article  Google Scholar 

  9. N. Saba, M. Jawaid, O.Y. Alothman, M.T. Paridah, Constr. Build. Mater. 106, 149–159 (2016)

    Article  Google Scholar 

  10. P. Pratim Das, V. Chaudhary, Mater. Today Proc. 25, 729–734 (2020)

    Article  Google Scholar 

  11. A. Chatterjee, S. Kumar, H. Singh, Compos. Commun. 22, 100483 (2020)

    Article  Google Scholar 

  12. M. Assarar, W. Zouari, H. Sabhi, R. Ayad, J.M. Berthelot, Compos. Struct. 132, 148–154 (2015)

    Article  Google Scholar 

  13. P. Manjula, C.D. Venkatachalam, M.S. Anbupazhani, S.S. Chandran, C. Lakshmanan, N.K. Naveen Kumar, AIP Conf. Proc. 2240, 090008 (2020)

    Article  Google Scholar 

  14. C. Guillebaud-Bonnafous, D. Vasconcellos, F. Touchard, L. Chocinski-Arnault, Compos. Part A App. Sci. Manuf. 43, 2046–2058 (2012)

    Article  Google Scholar 

  15. D. Verma, P. Gope, D. Verma, P.C. Gope, A. Shandilya, A. Gupta, M.K. Maheshwari, J. Mater. Environ. Sci. 3, 263–276 (2013)

    Google Scholar 

  16. S.A.H. Roslan, Z.A. Rasid, M.Z. Hassan, IOP Conf. Series Mater. Sci. Eng. 344, 012008 (2018)

    Article  Google Scholar 

  17. H. Singh, A. Chatterjee, Cellulose 27, 2555–2567 (2020)

    Article  Google Scholar 

  18. M.A. Suhot, M.Z. Hassan, S.A. Aziz, M.Y.M. Daud, Polymers 13, 2391 (2021)

    Article  Google Scholar 

  19. V.V. Bhaskar, K. Srinivas, D.S.B. Rao, J. Mech. Eng. 70, 167–180 (2020)

    Google Scholar 

  20. A.K. Samanta, A. Mukhopadhyay, S.K. Ghosh, Process. Jute Fibres Appl. (2020). https://doi.org/10.1016/b978-0-12-818782-1.00002-x

    Article  Google Scholar 

  21. K. Roy, S. Chandra Debnath, A. Das, G. Heinrich, P. Potiyaraj, Polym. Test. 67, 487–493 (2018)

    Article  Google Scholar 

  22. M. Jawaid, H.P.S. Abdul Khalil, A. Hassan, R. Dungani, A. Hadiyane, Compos. Part B Eng. 45, 619–624 (2013)

    Article  Google Scholar 

  23. D.S. Bajwa, S. Bhattacharjee, J. Nat. Fibers. 13, 660–669 (2016)

    Google Scholar 

  24. S. Sudha, G. Thilagavathi, J. Text. Inst. 107, 691–701 (2016)

    Article  Google Scholar 

  25. V. Mishra, S. Biswas, Proc. Eng. 51, 561–566 (2013)

    Article  Google Scholar 

  26. A. Kumar, A. Srivastava, Ind. Eng. Manag. 06, 4–7 (2018)

    Google Scholar 

  27. M. Zakaria, M. Ahmed, M. Hoque, A. Shaid, J. Nat. Fibers. 00, 1–12 (2018)

    Google Scholar 

  28. H. Ma, Y. Li, D. Wang, J. Rein. Plast. Compos. 33, 687–696 (2014)

    Article  Google Scholar 

  29. D.U. Shah, P.J. Schubel, M.J. Clifford, J. Compos. Mater. 47, 425–436 (2012)

    Article  Google Scholar 

  30. D.U. Shah, P.J. Schubel, P. Licence, M.J. Clifford, Compos. Sci. Technol. 72, 1909–1917 (2012)

    Article  Google Scholar 

  31. B. Madsen, P. Hoffmeyer, H. Lilholt, Compos. Part A Appl. Sci. Manuf. 38, 2204–2215 (2007)

    Article  Google Scholar 

  32. H. Ma, Y. Li, Y. Shen, L. Xie, D. Wang, Compos. Part A Appl. Sci. Manuf. 87, 98–108 (2016)

    Article  Google Scholar 

  33. G. Yang, M. Park, S.J. Park, Compos. Commun. 14, 34–42 (2019)

    Article  Google Scholar 

  34. B.M. Zaidi, K. Magniez, M. Miao, Compos. Part A Appl. Sci. Manuf. 75, 68–76 (2015)

    Article  Google Scholar 

  35. D.U. Shah, P.J. Schubel, M.J. Clifford, P. Licence, Polym. Plast. Technol. Eng. 53, 239–253 (2014)

    Article  Google Scholar 

  36. J.J. Andrew, S.M. Srinivasan, A. Arockiarajan, H.N. Dhakal, Compos. Struct. 224, 111007 (2019)

    Article  Google Scholar 

  37. A. Jabbar, J. Militký, J. Wiener, B.M. Kale, U. Ali, S. Rwawiire, Compos. Struct. 161, 340–349 (2017)

    Article  Google Scholar 

  38. N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Constr. Build. Mater. 124, 133–138 (2016)

    Article  Google Scholar 

  39. H. Singh, A. Chatterjee, Indian J. Fibre Text. Res. 46, 275–286 (2021)

    Google Scholar 

  40. S.S. Chee, M. Jawaid, M.T.H. Sultan, O.Y. Alothman, L.C. Abdullah, Compos. Part B Eng. 163, 165–174 (2019)

    Article  Google Scholar 

  41. N. Saba, A. Safwan, M.L. Sanyang, F. Mohammad, M. Pervaiz, M. Jawaid, O.Y. Alothman, M. Sain, Int. J. Biol. Macro. 102, 822–828 (2017)

    Article  Google Scholar 

  42. P. Sahu, M.K. Gupta, Mech. Compos. Mater. 57, 81–90 (2021)

    Article  Google Scholar 

  43. S. Pichandi, S. Rana, S. Parveen, R. Fangueiro, Carbohydr. Polym. 197, 137–146 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Textile Technology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India, for using Fibre Science Lab, Advance fabric research lab, and Textile testing lab.

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arobindo Chatterjee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, M., Chatterjee, A. Effect of Yarn Linear Density on Static and Dynamic Mechanical Properties of Jute Yarn Reinforced Epoxy Composites. J. Inst. Eng. India Ser. E 104, 73–81 (2023). https://doi.org/10.1007/s40034-023-00266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-023-00266-8

Keywords

Navigation