Skip to main content

Advertisement

Log in

Planning and Optimization of Hybrid Microgrid for Reliable Electrification of Rural Region

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

The microgrid is an economical and feasible alternative to provide the electrification of current, and future scenarios as the depletion rate of conventional fuel are high. It is essential to optimize microgrid components, including batteries, to analyze the total system cost and reliability. In the present work, a rural microgrid is planned to integrate wind, solar, diesel generator, and battery systems. The remote region of Uttarakhand (India) selected for the techno-economic and feasibility analysis of the proposed microgrid. The planned objective is concerned with determining the least per unit cost of energy and viability of the model. The optimization algorithm is applied under different cases to check its effectiveness for optimal planning. The suggested framework can be considered as part of comprehensive energy management. The simulation results indicate the high potential of saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(P_{s,t}^{Wind}\) :

Power supply to the grid by wind energy resource (kW)

\(P_{s,t}^{PV}\) :

Power supply to the grid by the solar energy system (kW)

\({\text{PV}}_{{\text{ power}}}\) :

Power output of PV array on an hourly basis (kW)

\({\text{P}}_{{{\text{rated}}}}\) :

PV array’s rated power (kW)

\({\text{f}}_{{{\text{PV}}}}\) :

Derating factor (%)

\({\text{I}}_{{\text{T}}}\) :

Solar insolation at temperature T (kw/m2)

\({\text{I}}_{{\text{s}}} { }\) :

Solar insolation at standard temperature

\(T_{cell}\) :

PV array cell temperature (°C)

\(T_{s}\) :

Cell temperature at 25 °C

\(\eta_{PV}\) :

PV panel efficiency (%)

tα :

Effective transmittance-absorptance

\(H_{l}\) :

Heat transfer coefficient (kW/m2/c)

\(T_{\alpha }\) :

Ambient temperature (°C)

\(V_{1}\) :

Cut-in speed (m/s)

COE:

Cost of energy

\(V_{r}\) :

Rated speed (m/s)

\(f_{gen}\) :

Fuel density (Kg/m3)

\(V_{2}\) :

Cut-out speed (m/s)

\(P_{r}\) :

Rated power (kW)

Q:

Initial energy of the battery

q1 :

Energy status in the beginning of time t

k :

Battery rate constant

c :

Capacity ratio

Δt:

Step length

q max :

Maximum charge capacity of the battery bank

q1 and q2 :

Final bound energy of the battery

P :

Battery bank total power

F :

Total fuel consumption

f0 :

Intercept co-efficient of fuel curve

f1 :

Slope of fuel curve

\(P_{gen}\) :

Generator's electric output.

\(P_{wt}\) :

Wind turbine output

\(\eta_{w}\) :

Efficiency of wind turbine (%)

Aw :

Swift area of wind turbine (m2)

\(gen_{1t} ,gen_{2t} ,gen_{3t}\) :

Capacity of the diesel generator

\(L_{1,t}\),\(L_{2,t}\), \(L_{3,t}\) :

Load demand of different categories

\(S_{12,t}\),\(S_{13,t} ,S_{23,t} ,S_{13,t} S_{24 ,t}\) :

Co-efficient of node matrix.

\(E_{t}^{battery}\) :

Stored energy in the battery.

\(P_{t,m}^{charge}\) :

Charging power of the battery

\(\eta_{charge}\) :

Charging efficiency of the battery (%)

\(SOC_{charge}\) :

State of charge of the battery (%)

\(SOC_{discharge}\) :

State of discharge of the battery (%)

DG :

Diesel generator

SPV :

Solar photovoltaic

WT :

Wind turbine

References

  1. A. Kumar, A.R. Singh, Y. Deng, X. He, P. Kumar, R.C. Bansal, Integrated assessment of a sustainable microgrid for a remote village in hilly region. Energy Convers. Manag. 180, 442–472 (2019). https://doi.org/10.1016/j.enconman.2018.10.084

    Article  Google Scholar 

  2. M. Junaid, A. Kumar, L. Mathew, Techno economic feasibility analysis of different combinations of PV-Wind- Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab. India. Renew. Sustain. Energy Rev. 76, 577–607 (2017). https://doi.org/10.1016/j.rser.2017.03.076

    Article  Google Scholar 

  3. B.J. Brearley, R.R. Prabu, A review on issues and approaches for microgrid protection. Renew. Sustain. Energy Rev. 67, 988–997 (2017). https://doi.org/10.1016/j.rser.2016.09.047

    Article  Google Scholar 

  4. S. Bahramara, M.P. Moghaddam, M.R. Haghifam, Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 62, 609–620 (2016). https://doi.org/10.1016/j.rser.2016.05.039

    Article  Google Scholar 

  5. A. Chauhan, R.P. Saini, Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India. Renew. Sustain. Energy Rev. 59, 388–405 (2016). https://doi.org/10.1016/j.rser.2015.12.290

    Article  Google Scholar 

  6. M. Bagheri, N. Shirzadi, E. Bazdar, C.A. Kennedy, Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver. Renew. Sustain. Energy Rev. 95, 254–264 (2018). https://doi.org/10.1016/j.rser.2018.07.037

    Article  Google Scholar 

  7. M.K. Shahzad, A. Zahid, T. Rashid, M.A. Rehan, M. Ali, M. Ahmad, Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy. 106, 264–273 (2017). https://doi.org/10.1016/j.renene.2017.01.033

    Article  Google Scholar 

  8. G. Veilleux, T. Potisat, D. Pezim, C. Ribback, J. Ling, A. Krysztofiński, A. Ahmed, J. Papenheim, A.M. Pineda, S. Sembian, S. Chucherd, Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy Sustain. Dev. 54, 1–13 (2020). https://doi.org/10.1016/j.esd.2019.09.007

    Article  Google Scholar 

  9. S. Rajanna, R.P. Saini, Modeling of integrated renewable energy system for electrification of a remote area in India. Renew. Energy. 90, 175–187 (2016). https://doi.org/10.1016/j.renene.2015.12.067

    Article  Google Scholar 

  10. A. Bhatt, M.P. Sharma, R.P. Saini, Feasibility and sensitivity analysis of an off-grid micro hydro—photovoltaic—biomass and biogas—diesel—battery hybrid energy system for a remote area in Uttarakhand state. India. Renew. Sustain. Energy Rev. 61, 53–69 (2016). https://doi.org/10.1016/j.rser.2016.03.030

    Article  Google Scholar 

  11. S. Upadhyay, M.P. Sharma, Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India. Renew. Energy. 77, 586–598 (2015). https://doi.org/10.1016/j.renene.2014.12.051

    Article  Google Scholar 

  12. C. Gamarra, J.M. Guerrero, Computational optimization techniques applied to microgrids planning: a review. Renew. Sustain. Energy Rev. 48, 413–424 (2015). https://doi.org/10.1016/j.rser.2015.04.025

    Article  Google Scholar 

  13. A. Parida, S. Choudhury, D. Chatterjee, Microgrid based hybrid energy co-operative for grid-isolated remote rural village power supply for East Coast Zone of India. IEEE Trans. Sustain. Energy. 9, 1375–1383 (2018). https://doi.org/10.1109/TSTE.2017.2782007

    Article  Google Scholar 

  14. J. Kumar, B.V. Suryakiran, A. Verma, T.S. Bhatti, Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state. India. Energy. 178, 176–185 (2019). https://doi.org/10.1016/j.energy.2019.04.105

    Article  Google Scholar 

  15. G.K. Suman, J.M. Guerrero, O.P. Roy, Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. Sustain. Cities Soc. 67, 102723 (2021). https://doi.org/10.1016/j.scs.2021.102723

  16. A. Bosisio, M. Moncecchi, G. Cassetti, M. Merlo, Microgrid design and operation for sensible loads: Lacor hospital case study in Uganda. Sustain. Energy Technol. Assessments. 36, 100535 (2019). https://doi.org/10.1016/j.seta.2019.100535

  17. A. Chauhan, R.P. Saini, Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India. Renew. Energy. 94, 587–604 (2016). https://doi.org/10.1016/j.renene.2016.03.079

    Article  Google Scholar 

  18. B.K. Das, Y.M. Al-Abdeli, G. Kothapalli, Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers. Appl. Energy. 196, 18–33 (2017). https://doi.org/10.1016/j.apenergy.2017.03.119

    Article  Google Scholar 

  19. H. Borhanazad, S. Mekhilef, V. Gounder Ganapathy, M. Modiri-Delshad, A. Mirtaheri, Optimization of micro-grid system using MOPSO. Renew. Energy. 71, 295–306 (2014). https://doi.org/10.1016/j.renene.2014.05.006

    Article  Google Scholar 

  20. S. Sanajaoba, E. Fernandez, Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System. Renew. Energy. 96, 1–10 (2016). https://doi.org/10.1016/j.renene.2016.04.069

    Article  Google Scholar 

  21. M. Vaccari, G.M. Mancuso, J. Riccardi, M. Cantù, G. Pannocchia, A sequential linear programming algorithm for economic optimization of Hybrid Renewable Energy Systems. J. Process Control. 189–201 (2019). https://doi.org/10.1016/j.jprocont.2017.08.015.

  22. S.K.A. Shezan, S. Julai, M.A. Kibria, K.R. Ullah, R. Saidur, W.T. Chong, R.K. Akikur, AC SC. J. Clean. Prod. (2016). https://doi.org/10.1016/j.jclepro.2016.03.014

    Article  Google Scholar 

  23. S. Mohamed, M.F. Shaaban, M. Ismail, E. Serpedin, K.A. Qaraqe, An Efficient Planning Algorithm for Hybrid Remote Microgrids. IEEE Trans. Sustain. Energy. 10, 257–267 (2019). https://doi.org/10.1109/TSTE.2018.2832443

    Article  Google Scholar 

  24. A.B. Kanase-Patil, R.P. Saini, M.P. Sharma, Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renew. Energy. 36, 2809–2821 (2011). https://doi.org/10.1016/j.renene.2011.04.022

    Article  Google Scholar 

  25. Uttarakhand Power Corporation Limited, Available on: https://www.upcl.org/, last accessed 2019/12/10.

  26. Uttarakhand Renewable Energy Development Agency, Available on: http://ureda.uk.gov.in/, last accessed 2019/12/10.

  27. F. Khalid, I. Dincer, M.A. Rosen, Thermoeconomic analysis of a solar-biomass integrated multigeneration system for a community. Appl. Therm. Eng. 120, 645–653 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.040

    Article  Google Scholar 

  28. POWER Data Access Viewer, Available on: https://power.larc.nasa.gov/data-access-viewer/, last accessed 2021/04/13.

  29. A.T. Dahiru, C.W. Tan, Optimal sizing and techno-economic analysis of grid-connected nanogrid for tropical climates of the Savannah. Sustain. Cities Soc. 52(2020). https://doi.org/10.1016/j.scs.2019.101824

  30. D. Guangqian, K. Bekhrad, P. Azarikhah, A. Maleki, A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew. Energy. 122, 551–560 (2018). https://doi.org/10.1016/j.renene.2018.02.021

    Article  Google Scholar 

  31. A.S. Aziz, M.F.N. Tajuddin, M.R. Adzman, M.F. Mohammed, M.A.M. Ramli, Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy. 191, (2020). https://doi.org/10.1016/j.energy.2019.116591.

  32. A.H. Hubble, T.S. Ustun, Composition, placement, and economics of rural microgrids for ensuring sustainable development. Sustain. Energ. Grids Netw. 13, 1–18 (2018). https://doi.org/10.1016/j.segan.2017.10.001.

  33. M.A. Hossain, H.R. Pota, S. Squartini, A.F. Abdou, Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renew. Energy. 136, 746–757 (2019). https://doi.org/10.1016/j.renene.2019.01.005

    Article  Google Scholar 

Download references

Funding

No outside funding or grants related to research present in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Mustafa Kamal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, M.M., Ashraf, I. Planning and Optimization of Hybrid Microgrid for Reliable Electrification of Rural Region. J. Inst. Eng. India Ser. B 103, 173–188 (2022). https://doi.org/10.1007/s40031-021-00631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00631-4

Keywords

Navigation