Skip to main content
Log in

Antioxidant and Antimicrobial Efficacy of Peptidic Hydrolysate Obtained from Porcine Blood

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Aim of present research was to explore changes in pH, degree of hydrolysis (DH) antioxidant [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2′-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing-antioxidant power assay (FRAP)] and antibacterial property of enzymatic hydrolysates obtained from hydrolysis of porcine blood using proteases viz., alcalase, trypsin and papain. It was observed that pH of porcine blood hydrolysates slightly decreased as hydrolysis progressed for all the enzymes. DH improved considerably (p < 0.05) up to 6 h for alcalase and papain digested samples, while it increased significantly (p < 0.05) up to 4 h for trypsin. ABTS, DPPH, FRAP assay and antimicrobial activity improved appreciably (p < 0.05) indicating positive correlation with duration of digestion and DH. SDS-PAGE showed distinct decrease in amount and intensity of protein bands with progressing duration of digestion. It can be concluded from the study that porcine blood can be utilized as excellent substrate for production of protein hydrolysates with potent antioxidant and antimicrobial activities which may be employed for meat/food products preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler-Nissen J (1986) Enzymic hydrolysis of food proteins. Elsevier, New York

    Google Scholar 

  2. Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2011) Effect of peptide size on antioxidant properties of African Yam Bean Seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int J Mol Sci 12:6685–6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  4. Balaswamy K, PrabhakaraRao PG, Narsing RG, Jyothirmayi T (2011) Functional properties of roe protein hydrolysates from Catla Catla. Electron J Environ Agric Food Chem 10:2139–2147

    CAS  Google Scholar 

  5. Benzie IFF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol 299:15–27

    Article  CAS  Google Scholar 

  6. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M (2009) Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem 114:1198–1205

    Article  CAS  Google Scholar 

  7. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  8. Chang OK, Go EH, Gi-Sung H, Kuk-Hwan S, Hyoun WK, Seok-Geun J, Mi-Hwa O, Beom-Young P, Jun-Sang H (2013) Novel antioxidant peptide derived from the ultrafiltrate of ovomucin hydrolysate. J Agric Food Chem 61:7294–7300

    Article  CAS  PubMed  Google Scholar 

  9. Chen HM, Muramoto K, Yamauchi F (1995) Structural analysis of antioxidant peptides from soybean β-conglycinin. J Agric Food Chem 43:574–578

    Article  CAS  Google Scholar 

  10. Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46:49–53

    Article  CAS  PubMed  Google Scholar 

  11. Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  12. Hiidenhovi J, Hietanen A, Makinen J, Huopalahti R, Ryhanen EL (2005) Hydrolysis of ovomucin by different enzymes. In: XVIIth European symposium on the quality of eggs and egg products, Doorwerth. CAB Direct, Wallingford, pp 251–256

  13. Hoyle NT, Merritt JH (1994) Quality of fish protein hydrolysates from herring (Clupea harengus). J Food Sci 59:76–79

    Article  CAS  Google Scholar 

  14. Khantaphant S, Benjakul S, Ghomi MR (2011) The effects of pre-treatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Sci Technol 44:1139–1148

    Article  CAS  Google Scholar 

  15. Li B, Chen F, Wang X, Ji B, Wu Y (2007) Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem 102:1135–1143

    Article  CAS  Google Scholar 

  16. Lowry OH, Rosenbrough NJ, Fair AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  17. Mao XY, Cheng X, Wang X, Wu SJ (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126:484–490

    Article  CAS  Google Scholar 

  18. Marcuse R (1960) Antioxidant effect of amino acids. Nature 186:886–887

    Article  CAS  PubMed  Google Scholar 

  19. Mine Y, Ma FP, Lauriau S (2004) Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 52:1088–1094

    Article  CAS  PubMed  Google Scholar 

  20. Nedjar-Arroume NV, Dubois-Delval K, Miloudi R, Daoud F, Krier M, Kouach G, Briand Guillochon D (2006) Isolation and characterization of four antibacterial peptides from bovine haemoglobin. Peptide 27:2082–2089

    Article  CAS  Google Scholar 

  21. Ovissipour M, Rasco B, Shiroodi SG, Modanlow M, Gholamid S, Nemati M (2013) Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. J Sci Food Agric 93:1718–1726

    Article  CAS  PubMed  Google Scholar 

  22. Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Sci Technol 38:859–865

    Article  CAS  Google Scholar 

  23. Raghavan S, Kristinsson HG, Leeuwenburgh C (2008) Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. J Agric Food Chem 56:10359–10367

    Article  CAS  PubMed  Google Scholar 

  24. Sakanaka S, Tachibana Y (2006) Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effect on lipid oxidation in beef and tuna homogenates. Food Chem 95:243–249

    Article  CAS  Google Scholar 

  25. Salami MR, Yousefi MR, Ehsani SH, Razavi JM, Chobert Haertle T (2009) Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: possible significance for use in infant formula. Int Dairy J 19:518–523

    Article  CAS  Google Scholar 

  26. Salwanee SWM, Wan A, Mamot S, Maskat MY, Ibrahim S (2013) Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysian 42:279–287

    CAS  Google Scholar 

  27. Thiansilakul Y, Benjakul S, Shahidi F (2007) Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem 31:266–287

    Article  CAS  Google Scholar 

  28. Verma AK, Chatli MK, Kumar P, Mehta N (2017) Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian J Anim Sci 87:711–717

    CAS  Google Scholar 

  29. Verma AK, Chatli MK, Mehta N, Kumar P (2017) Efficacy of antioxidant and antimicrobial activity of whole porcine blood hydrolysates and its fractions under in vitro conditions. Anim Prod Sci. https://doi.org/10.1071/AN16804

    Article  Google Scholar 

  30. Wang F-S (2003) Effect of antimicrobial proteins from porcine leukocytes on Staphylococcus aureus and Escherichia coli in comminuted meats. Meat Sci 65:615–621

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Yansheng W, Xiangli D, Xiaoxia Z, Wenqing Z (2013) Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties. BMC Res Notes 6:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

First author is thankful to Department of Science and Technology, Ministry of Science and Technology, Government of India for financial assistance provided in the form of Inspire Fellowship (JRF-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh K. Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Chatli, M.K., Kumar, P. et al. Antioxidant and Antimicrobial Efficacy of Peptidic Hydrolysate Obtained from Porcine Blood. Agric Res 8, 116–124 (2019). https://doi.org/10.1007/s40003-018-0350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0350-6

Keywords

Navigation