Skip to main content
Log in

Fibre Reinforced Polymers for Civil Engineering Applications

  • Applications
  • Load-Bearing Adhesively Bonded
  • Published:
ADHESION ADHESIVES&SEALANTS Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. Structural Design of Polymer Composites: Eurocomp Design Code and Background Document. CRC Press; 2003.

  2. Vallée T. Adhesively Bonded Lap Joints of Pultruded GFRP Shapes. EPFL, 2004.

    Google Scholar 

  3. Griffith AA. The Phenomena of Rupture and Flow in Solids. Philos Trans R Soc A Math Phys Eng Sci 1921;221:163–98. doi:10.1098/rsta.1921.0006.

    Article  Google Scholar 

  4. Kinloch AJ. Interfacial Fracture Mechanical Aspects of Adhesive Bonded Joints — A Review. J Adhes 1979;10:193–219. doi:10.1080/00218467908544625.

    Article  CAS  Google Scholar 

  5. Fernlund G, Spelt JK. Mixed-mode fracture characterization of adhesive joints. Compos Sci Technol 1994;50:441–9. doi:10.1016/0266-3538(94)90052-3.

    Article  CAS  Google Scholar 

  6. Choupani N. Mixed-mode cohesive fracture of adhesive joints: Experimental and numerical studies. Eng Fract Mech 2008;75:4363–82. doi:10.1016/j.engfracmech.2008.04.023.

    Article  Google Scholar 

  7. Marzi S, Biel A, Stigh U. On experimental methods to investigate the effect of layer thickness on the fracture behavior of adhesively bonded joints. Int J Adhes Adhes 2011;31:840–50. doi:10.1016/j.ijadhadh.2011.08.004.

    Article  CAS  Google Scholar 

  8. Greer JM, Galyon Dorman SE, Hammond MJ. Some comments on the Arcan mixed-mode (I/II) test specimen. Eng Fract Mech 2011;78:2088–94. doi:10.1016/j.engfracmech.2011.03.017.

    Article  Google Scholar 

  9. Volkersen O. Die Nietkraftverteilung in zugbeanspruchten≟oxNietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtforschung 1938;15:41–7.

    Google Scholar 

  10. Goland M, Reissner E. The stresses in cemented joints. J Appl Mech 1944;11:A17–27.

    Google Scholar 

  11. Oplinger DW. Effects of adherend deflections in single lap joints. Int J Solids Struct 1994;31:2565–87. doi:10.1016/0020-7683(94)90037-X.

    Article  Google Scholar 

  12. Tsai MY, Oplinger DW, Morton J. Improved theoretical solutions for adhesive lap joints. Int J Solids Struct 1998;35:1163–85. doi:10.1016/S0020-7683(97)00097-8.

    Article  Google Scholar 

  13. da Silva LFM, das Neves PJC, Adams RD, Spelt JK. Analytical models of adhesively bonded joints-Part I: Literature survey. Int J Adhes Adhes 2009;29:319–30. doi:10.1016/j.ijadhadh.2008.06.005.

    Article  Google Scholar 

  14. da Silva LFM, das Neves PJC, Adams RD, Wang A, Spelt JK. Analytical models of adhesively bonded joints-Part II: Comparative study. Int J Adhes Adhes 2009;29:331–41. doi:10.1016/j.ijadhadh.2008.06.007.

    Article  Google Scholar 

  15. Campilho RDSG, Moura DC, Banea MD, Da Silva LFM. Adhesive thickness effects of a ductile adhesive by optical measurement techniques. Int J Adhes Adhes 2015;57:125–32. doi:10.1016/j.ijadhadh.2014.12.004.

    Article  CAS  Google Scholar 

  16. da Silva LFM, Lopes MJCQ. Joint strength optimization by the mixed-adhesive technique. Int J Adhes Adhes 2009;29:509–14. doi:10.1016/j.ijadhadh.2008.09.009.

    Article  Google Scholar 

  17. Hart-Smith LJ. The role of biaxial stresses in discriminating between meaningful and illusory composite failure theories. Compos Struct 1993;25:3–20. doi:10.1016/0263-8223(93)90146-H.

    Article  Google Scholar 

  18. Hart-Smith LJ. Predictions of a generalized maximum-shear-stress failure criterion for certain fibrous composite laminates. Fail. Criteria Fibre-Reinforced-Polymer Compos., 2004, p. 219–63. doi:10.1016/B978-008044475-8/50010-X.

    Chapter  Google Scholar 

  19. Echaabi J, Trochu F, Gauvin R. Review of failure criteria of fibrous composite materials. Polym Compos 1996;17:786–798. doi:10.1002/pc.10671.

    Article  CAS  Google Scholar 

  20. Deuschle HM, Puck A. Application of the Puck failure theory for fibre-reinforced composites under three-dimensional stress: Comparison with experimental results. J Compos Mater 2012;47:827–46. doi:10.1177/0021998312462158.

    Article  Google Scholar 

  21. Bažant ZP, Xi Y, Reid SG. Statistical size effect in quasi-brittle structures: I. Is Weibull Theory applicable? J Eng Mech 1991;117:2609–22. doi:10.1061/(ASCE)0733-9399(1991)117:11(2609).

    Article  Google Scholar 

  22. Langlois R. Estimation of Weibull parameters. J Mater Sci Lett 1991;10:1049–51. doi:10.1007/BF00720121.

    Article  Google Scholar 

  23. Freudenthal AM. Statistical approach to brittle fracture. Fracture 1968;2:591–619.

    Google Scholar 

  24. Vallée T, Correia JRJRJR, Keller T. Optimum thickness of joints made of GFPR pultruded adherends and polyurethane adhesive. Compos Struct 2010;92:2102–8. doi:10.1016/j.compstruct.2009.09.056.

    Article  Google Scholar 

  25. Vallée T, Tannert T, Meena R, Hehl S. Dimensioning method for bolted, adhesively bonded, and hybrid joints involving Fibre-Reinforced-Polymers. Compos Part B Eng 2013;46:179–87. doi:10.1016/j.compositesb.2012.09.074.

    Article  Google Scholar 

  26. Vallée T, Correia JRJRCJR, Keller T. Probabilistic strength prediction for double lap joints composed of pultruded GFRP profiles part I: Experimental and numerical investigations. Compos Sci Technol 2006;66:1915–30. doi:10.1016/j.compscitech.2006.04.001.

    Article  Google Scholar 

  27. Correia JRR, Vallée T, Keller T. Optimum thickness of joints made of GFRP pultruded adherends and polyurethane adhesive. ICCM Int. Conf. Compos. Mater., 2009.

    Google Scholar 

  28. Tannert T, Hehl S, Vallee T. Probabilistic design of adhesively bonded timber joints. BAUTECHNIK 2010;87:623–9. doi:10.1002/bate.201010043.

    Article  Google Scholar 

  29. Tannert T, Vallée T, Hehl S. Probabilistic strength prediction of adhesively bonded timber joints. Wood Sci Technol 2011;46:503–13. doi:10.1007/s00226-011-0424-0.

    Article  Google Scholar 

  30. Hahn B, Vallée T, Stamm B, Weinand Y. Experimental investigations and probabilistic strength prediction of linear welded double lap joints composed of timber. Int J Adhes Adhes 2012;39:42–8. doi:10.1016/j.ijadhadh.2012.06.004.

    Article  CAS  Google Scholar 

  31. Fecht S, Vallée T, Tannert T, Fricke H. Adhesively Bonded Hardwood Joints under Room Temperature and Elevated Temperatures. J Adhes 2014;90:401–19. doi:10.1080/00218464.2013.836968.

    Article  CAS  Google Scholar 

  32. Grunwald C, Fecht S, Vallée T, Tannert T, Valée T, Tannert T, et al. Adhesively bonded timber joints — Do defects matter? Int J Adhes Adhes 2014;55:12–7. doi:10.1016/j.ijadhadh.2014.07.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Vallée.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, T., Fecht, S., Grunwald, C. et al. Fibre Reinforced Polymers for Civil Engineering Applications. Adhes Adhes Sealants 15, 14–19 (2018). https://doi.org/10.1007/s35784-018-0007-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s35784-018-0007-7

Keywords

Navigation