Skip to main content

Advertisement

Log in

Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnaby JR. Fisiología del ejercicio físico y del entrenamiento. 2nd ed. 2002, Barcelona: Paidotribo. 192

  2. Boons MC. Automatism, compulsion: statements and restatements. Rev Fr Psychanal. 1970;34:541–70.

    CAS  PubMed  Google Scholar 

  3. Fleischer S, Feiner R, Dvir T. Cardiac tissue engineering: from matrix design to the engineering of bionic hearts. Regen Med. 2017;12:275–84.

    Article  CAS  PubMed  Google Scholar 

  4. Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development. 2016;143:1242–58.

    Article  PubMed  CAS  Google Scholar 

  5. Appasani K, Appasani RK. Stem cells and regenerative medicine: from molecular embryology to tissue engineering. Springer Science & Business Media; 2010.

  6. Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, et al. Regenerative medicine, organ bioengineering and transplantation. Br J Surg. 2020;107:793–800.

    Article  CAS  PubMed  Google Scholar 

  7. Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, et al. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9:649–72.

    Article  CAS  PubMed  Google Scholar 

  8. Castilho L, Moraes A, Augusto E, Butler M. Animal cell technology: from biopharmaceuticals to gene therapy. Taylor & Francis; 2008.

  9. Kim I. A brief overview of cell therapy and its product. J Korean Assoc Oral Maxillofac Surg. 2013;39:201–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. U.S. Food and Drug Administration. What is Gene Therapy? Cellular & Gene Therapy Products. 2018. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy. Accessed 25 July 2018.

  11. Wahid F, Khan T, Hussain Z, Ullah H. Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin AMA, Mohammad A, editors. Applications of nanocomposite materials in drug delivery. Woodhead Publishing Series in Biomaterials; 2018. p. 701–35.

  12. Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, et al. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng. 2019;13:57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Theus AS, Tomov ML, Cetnar A, Lima B, Nish J, McCoy K, et al. Biomaterial approaches for cardiovascular tissue engineering. Emergent Mater. 2019;2:193–207.

    Article  CAS  Google Scholar 

  14. Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11:492.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol. 2015;15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ren X, Zhao M, Lash B, Martino MM, Julier Z. Growth factor engineering strategies for regenerative medicine applications. Front Bioeng Biotechnol. 2020;7:469.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Casanova MR, Oliveira C, Fernandes EM, Reis RL, Silva TH, Martins A, et al. Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomater Sci. 2020;8:2577–89.

    Article  CAS  PubMed  Google Scholar 

  18. Ding T, Kang W, Li J, Yu L, Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology. 2021;19:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subbiah R, Guldberg RE. Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthc Mater. 2019;8:e1801000.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao HY, Wu J, Zhu JJ, Xiao ZC, He CC, Shi HX, et al. Research advances in tissue engineering materials for sustained release of growth factors. BioMed Res Int. 2015;2015:808202.

    PubMed  PubMed Central  Google Scholar 

  21. Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine. 2020;15:6097–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential clinical applications of stem cells in regenerative medicine. Adv Exp Med Biol. 2019;1201:1–22.

    Article  CAS  PubMed  Google Scholar 

  23. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22:824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hosseini S, Taghiyar L, Safari F, Baghaban Eslaminejad M. Regenerative medicine applications of mesenchymal stem cells. Adv Exp Med Biol. 2018;1089:115–41.

    Article  CAS  PubMed  Google Scholar 

  25. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM.  Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6:2173–85.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tonelli FMP, De Cássia Oliveira Paiva N, De Medeiros RVB, Pinto MCX, Tonelli FCP, Resende RR. Tissue engineering: the use of stem cells in regenerative medicine. In: Soccol VT, Pandey A, Resende RR, editors. Current developments in biotechnology and bioengineering: human and animal health applications. Elsevier; 2016. p. 315-24.

  27. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76:3323–48.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte-mesenchymal stem cell co-implantation. PLoS One. 2018;13:e0202356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Boeckel DG, Sesterheim P, Peres TR, Augustin AH, Wartchow KM, Machado DC, et al. Adipogenic mesenchymal stem cells and hyaluronic acid as a cellular compound for bone tissue engineering. J Craniofac Surg. 2019;30:777–83.

    Article  PubMed  Google Scholar 

  31. Kellar R, Diller RB, Machula H, Muller J, Ensley B. Biomimetic skin substitutes created from tropoelastin help to promote wound healing. Front Bioeng Biotechnol. Conference Abstract: 10th World Biomaterials Congress. https://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.00174/event_abstract

  32. World Health Organization. World No Tobacco Day 2018: Tobacco breaks hearts–choose health, not tobacco (No. WHO/NMH/PND/18.4). World Health Organization. 2018.

  33. Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int suppl. 2011;1:63–7.

    Article  Google Scholar 

  34. Laplane L, Solary E. Towards a classification of stem cells. ELife. 2019;8:e46563

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gilbert S.F. Developmental Biology. 6a ed. 2000, Sunderland (MA): Sinauer Associates

  36. Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnol Adv. 2018;36:1111–26.

    Article  PubMed  Google Scholar 

  37. Zuba-Surma EK, Wojakowski W, Ratajczak MZ, Dawn B.  Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal. 2011;15:1821–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuruca SE, Çelik DD, Özerkan D, Erdemir G. Characterization and isolation of very small embryonic-like (vsel) stem cells obtained from various human hematopoietic cell sources. Stem Cell Rev Rep. 2019;15:730–42.

    Article  CAS  PubMed  Google Scholar 

  39. Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep. 2020;16:3–32.

    Article  PubMed  Google Scholar 

  40. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tweedell KS. The adaptability of somatic stem cells: a review. J Stem Cells Regener Med. 2017;13:3–13.

    Article  Google Scholar 

  42. Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016;2016:9451492–9451492.

    Article  PubMed  Google Scholar 

  43. Viswanathan S, Shi Y, Galipeau J, Krampera M, Leblanc K, Martin I, et al. Mesenchymal stem versus stromal cells: international society for cell & gene therapy (ISCT®) mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–24.

    Article  CAS  PubMed  Google Scholar 

  44. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells the international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine. Regen Med. 2019;14:595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.

    Article  CAS  PubMed  Google Scholar 

  47. Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom. 2006;70:391–9.

    Article  PubMed  CAS  Google Scholar 

  48. Halfon S, Abramov N, Grinblat B, Ginis I. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 2011;20:53–66.

    Article  CAS  PubMed  Google Scholar 

  49. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018;18:e264–77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mildmay-White A, Khan W. Cell surface markers on adipose-derived stem cells: a systematic review. Curr Stem Cell Res Ther. 2017;12:484–92.

    Article  CAS  PubMed  Google Scholar 

  52. Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GJ, et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007;16:91–104.

    Article  PubMed  Google Scholar 

  53. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dave JR, Tomar GB. Dental tissue-derived mesenchymal stem cells: applications in tissue engineering. Crit Rev Biomed Eng. 2018;46:429–68.

    Article  PubMed  Google Scholar 

  55. Beeravolu N, McKee C, Alamri A, Mikhael S, Brown C, Perez-Cruet M, et al. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J Vis Exp. 2017;122:e55224

    Google Scholar 

  56. Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, et al. Comparative analysis of human wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018;372:51–65.

    Article  CAS  PubMed  Google Scholar 

  57. Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7:118–26.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fang W, Sun Z, Chen X, Han B, Vangsness CT Jr. Synovial fluid mesenchymal stem cells for knee arthritis and cartilage defects: a review of the literature. J Knee Surg. 2021;34:1476–85.

    Article  PubMed  Google Scholar 

  59. Rahmadian R, Adly M, Dilogo IH, Revilla G. Clinical application prospect of human synovial tissue stem cells from osteoarthritis grade iv patients in cartilage regeneration. Open Access Maced J Med Sci. 2021;9:52–7.

    Article  Google Scholar 

  60. Mizuno M, Katano H, Mabuchi Y, Ogata Y, Ichinose S, Fujii S, et al. Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Res Ther. 2018;9:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Čamernik K, Mihelič A, Mihalič R, Marolt Presen D, Janež A, Trebše R, et al. Skeletal-muscle-derived mesenchymal stem/stromal cells from patients with osteoarthritis show superior biological properties compared to bone-derived cells. Stem Cell Res. 2019;38:101465.

    Article  PubMed  CAS  Google Scholar 

  62. Klimczak A, Kozlowska U, Kurpisz M. Muscle stem/progenitor cells and mesenchymal stem cells of bone marrow origin for skeletal muscle regeneration in muscular dystrophies. Arch Immunol Ther Exp (Warsz). 2018;66:341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uezumi A, Nakatani M, Ikemoto-Uezumi M, Yamamoto N, Morita M, Yamaguchi A, et al. Cell-surface protein profiling identifies distinctive markers of progenitor cells in human skeletal muscle. Stem Cell Rep. 2016;7:263–78.

    Article  CAS  Google Scholar 

  64. Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Res Ther. 2016;7:82.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020;21:708.

    Article  CAS  PubMed Central  Google Scholar 

  66. Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2012;2:154–62.

    PubMed  Google Scholar 

  67. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13:1738–55.

    Article  CAS  PubMed  Google Scholar 

  68. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 2019;114:108765.

    Article  CAS  PubMed  Google Scholar 

  69. Murakami M, Horibe H, Iohara K, Hayashi Y, Osako Y, Takei Y, et al. The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials. 2013;34:9036–47.

    Article  CAS  PubMed  Google Scholar 

  70. Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, et al. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep. 2019;9:5430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Alsulaimani RS, Ajlan SA, Aldahmash AM, Alnabaheen MS, Ashri NY.  Isolation of dental pulp stem cells from a single donor and characterization of their ability to differentiate after 2 years of cryopreservation. Saudi Med J. 2016;37:551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143:2273–80.

    Article  CAS  PubMed  Google Scholar 

  73. Hassan G, Kasem I, Antaki R, Antaki MB, AlKadry R, Aljamali M. Isolation of umbilical cord mesenchymal stem cells using human blood derivatives accompanied with explant method. Stem Cell Investig. 2019;6:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Troyer DL, Weiss ML. Concise review: wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26:591–9.

    Article  PubMed  Google Scholar 

  75. Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int. 2018;42:262–71.

    Article  CAS  PubMed  Google Scholar 

  76. Li J, Campbell DD, Bal GK, Pei M. Can arthroscopically harvested synovial stem cells be preferentially sorted using stage-specific embryonic antigen 4 antibody for cartilage, bone, and adipose regeneration? Arthroscopy. 2014;30:352–61.

    Article  PubMed  Google Scholar 

  77. Biz C, Crimi A, Fantoni I, Pozzuoli A, Ruggieri P. Muscle stem cells: what’s new in orthopedics? Acta Biomed. 2019;90:8–13.

    CAS  PubMed  Google Scholar 

  78. Franzin C, Piccoli M, Urbani L, Biz C, Gamba P, De Coppi P, et al. Isolation and expansion of muscle precursor cells from human skeletal muscle biopsies. Methods Mol Biol. 2016;1516:195–204.

    Article  CAS  PubMed  Google Scholar 

  79. Čamernik K, Marc J, Zupan J. Human skeletal muscle-derived mesenchymal stem/stromal cell isolation and growth kinetics analysis. Methods Mol Biol. 2019;2045:119–29.

    Article  PubMed  CAS  Google Scholar 

  80. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–62.

    Article  CAS  PubMed  Google Scholar 

  81. Abdul Rahman R, Mohamad Sukri N, Md Nazir N, Ahmad Radzi MA, Zulkifly AH, Che Ahmad A, et al. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Tissue Cell. 2015;47:420–30.

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Wang M, Jing X, Guo W, Hao C, Zhang Y, et al. Bone marrow- and adipose tissue-derived mesenchymal stem cells: characterization, differentiation, and applications in cartilage tissue engineering. Crit Rev Eukaryot Gene Expr. 2018;28:285–310.

    Article  PubMed  Google Scholar 

  83. Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomater. 2016;33:96–109.

    Article  CAS  PubMed  Google Scholar 

  84. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–62.

    Article  CAS  PubMed  Google Scholar 

  85. Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT, HosseinKhani H, Bahrami AR, et al. PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res A. 2016;104:2020–8.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J Zhejiang Univ Sci B. 2017;18:963–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Klar AS, Zimoch J, Biedermann T. Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int. 2017;2017:9747010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol. 2019;843:307–15.

    Article  CAS  PubMed  Google Scholar 

  89. Mashiko T, Takada H, Wu SH, Kanayama K, Feng J, Tashiro K, et al. Therapeutic effects of a recombinant human collagen peptide bioscaffold with human adipose-derived stem cells on impaired wound healing after radiotherapy. J Tissue Eng Regen Med. 2018;12:1186–94.

    Article  CAS  PubMed  Google Scholar 

  90. Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, et al. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng. 2016;44:1908–20.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Prochazka A. Neurophysiology and neural engineering: a review. J Neurophysiol. 2017;118:1292–309.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull. 2019;150:50–60.

    Article  CAS  PubMed  Google Scholar 

  93. Quintiliano K, Crestani T, Silveira D, Helfer VE, Rosa A, Balbueno E, et al. Neural differentiation of mesenchymal stem cells on scaffolds for nerve tissue engineering applications. Cell Reprogram. 2016;18:369–81.

    Article  CAS  PubMed  Google Scholar 

  94. Jamali S, Mostafavi H, Barati G, Eskandari M, Nadri S. Differentiation of mesenchymal stem cells -derived trabecular meshwork into dopaminergic neuron-like cells on nanofibrous scaffolds. Biologicals. 2017;50:49–54.

    Article  CAS  PubMed  Google Scholar 

  95. Li N, Huang R, Zhang X, Xin Y, Li J, Huang Y, et al. Stem cells cardiac patch from decellularized umbilical artery improved heart function after myocardium infarction. Biomed Mater Eng. 2017;28:S87–94.

    CAS  PubMed  Google Scholar 

  96. Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, et al. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater. 2018;80:154–68.

    Article  CAS  PubMed  Google Scholar 

  97. Prat-Vidal C, Rodríguez-Gómez L, Aylagas M, Nieto-Nicolau N, Gastelurrutia P, Agustí E, et al. First-in-human PeriCord cardiac bioimplant: scalability and GMP manufacturing of an allogeneic engineered tissue graft. EBioMedicine. 2020;54:102729.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Du X, Wei D, Huang L, Zhu M, Zhang Y, Zhu Y.  3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;103:109731.

    Article  CAS  PubMed  Google Scholar 

  99. Bidgoli MR, Alemzadeh I, Tamjid E, Khafaji M, Vossoughi M. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: effect of particle size on physico-mechanical properties and in vitro cellular behavior. Mater Sci Eng C Mater Biol Appl. 2019;103:109688.

    Article  CAS  PubMed  Google Scholar 

  100. Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med. 2018;12:191–203.

    Article  CAS  PubMed  Google Scholar 

  101. Ang SL, Shaharuddin B, Chuah JA, Sudesh K. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Int J Biol Macromol. 2020;145:173–88.

    Article  CAS  PubMed  Google Scholar 

  102. Salgado CL, Barrias CC, Monteiro FJM. Clarifying the tooth-derived stem cells behavior in a 3D biomimetic scaffold for bone tissue engineering applications. Front Bioeng Biotechnol. 2020;8:724.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gutiérrez-Quintero JG, Durán Riveros JY, Martínez Valbuena CA, Pedraza Alonso S, Munévar JC, Viafara-García SM. Critical-sized mandibular defect reconstruction using human dental pulp stem cells in a xenograft model-clinical, radiological, and histological evaluation. Oral Maxillofac Surg. 2020;24:485–93.

    Article  PubMed  Google Scholar 

  104. Gurumurthy B, Pal P, Griggs JA, Janorkar AV. Optimization of collagen-elastin-like polypeptide-bioglass scaffold composition for osteogenic differentiation of adipose-derived stem cells. Materialia (Oxf). 2020;9:100572.

    Article  CAS  Google Scholar 

  105. Winkler S, Mutschall H, Biggemann J, Fey T, Greil P, Körner C, et al. Human umbilical vein endothelial cell support bone formation of adipose-derived stem cell-loaded and 3D-printed osteogenic matrices in the arteriovenous loop model. Tissue Eng Part A. 2021;27:413–23.

    Article  CAS  PubMed  Google Scholar 

  106. Lin Y, Umebayashi M, Abdallah MN, Dong G, Roskies MG, Zhao YF, et al. Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration. Sci Rep. 2019;9:472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chi H, Jiang A, Wang X, Chen G, Song C, Prajapati RK, et al. Dually optimized polycaprolactone/collagen I microfiber scaffolds with stem cell capture and differentiation-inducing abilities promote bone regeneration. J Mater Chem B. 2019;7:7052–64.

    Article  CAS  PubMed  Google Scholar 

  108. Li S, Song C, Yang S, Yu W, Zhang W, Zhang G, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1alpha upregulation and enhanced type H vessel formation. Acta Biomater. 2019;94:253–67.

    Article  CAS  PubMed  Google Scholar 

  109. Tsukamoto J, Naruse K, Nagai Y, Kan S, Nakamura N, Hata M, et al. Efficacy of a self-assembling peptide hydrogel, SPG-178-Gel, for Bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells. Tissue Eng Part A. 2017;23:1394–402.

    Article  CAS  PubMed  Google Scholar 

  110. Chamieh F, Collignon AM, Coyac BR, Lesieur J, Ribes S, Sadoine J, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dziedzic DSM, Francisco JC, Mogharbel BF, Irioda AC, Stricker PEF, Floriano J, et al. Combined biomaterials: amniotic membrane and adipose tissue to restore injured bone as promoter of calcification in bone regeneration: preclinical model. Calcif Tissue Int. 2020;108:667–79.

    Article  CAS  Google Scholar 

  112. Huang S, Jia S, Liu G, Fang D, Zhang D. Osteogenic differentiation of muscle satellite cells induced by platelet-rich plasma encapsulated in three-dimensional alginate scaffold. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:S32-40.

    Article  PubMed  Google Scholar 

  113. Tang Y, Tong X, Conrad B, Yang F. Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration in vivo. Theranostics. 2020;10:6035–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Caballero M, Jones DC, Shan Z, Soleimani S, van Aalst JA. Tissue engineering strategies to improve osteogenesis in the juvenile swine alveolar cleft model. Tissue Eng Part C Methods. 2017;23:889–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dewey MJ, Johnson EM, Slater ST, Milner DJ, Wheeler MB, Harley BAC. Mineralized collagen scaffolds fabricated with amniotic membrane matrix increase osteogenesis under inflammatory conditions. Regen Biomater. 2020;7:247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hwang TI, Kim JI, Lee J, Moon JY, Lee JC, Joshi MK, et al. In situ biological transmutation of catalytic lactic acid waste into calcium lactate in a readily processable three-dimensional fibrillar structure for bone tissue engineering. ACS Appl Mater Interfaces. 2020;12:18197–210.

    Article  CAS  PubMed  Google Scholar 

  117. Song JE, Jeon YS, Tian J, Kim WK, Choi MJ, Carlomagno C, et al. Evaluation of silymarin/duck’s feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019;97:347–55.

    Article  CAS  PubMed  Google Scholar 

  118. Liu J, Zhou P, Smith J, Xu S, Huang C. A Plastic beta-Tricalcium phosphate/gelatine scaffold seeded with allogeneic adipose-derived stem cells for mending rabbit bone defects. Cell Reprogram. 2021;23:35–46.

    Article  CAS  PubMed  Google Scholar 

  119. Sulaiman S, Chowdhury SR, Fauzi MB, Rani RA, Yahaya NHM, Tabata Y, et al. 3D culture of MSCs on a gelatin microsphere in a dynamic culture system enhances chondrogenesis. Int J Mol Sci. 2020;21:2688.

    Article  CAS  PubMed Central  Google Scholar 

  120. Shen H, Lin H, Sun AX, Song S, Wang B, Yang Y, et al. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels. Acta Biomater. 2020;105:44–55.

    Article  CAS  PubMed  Google Scholar 

  121. Yea JH, Bae TS, Kim BJ, Cho YW, Jo CH. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 2020;114:104–16.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Liu S, Guo W, Wang M, Hao C, Gao S, et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis Cartilage. 2018;26:954–65.

    Article  CAS  PubMed  Google Scholar 

  123. Talaat W, Aryal Ac S, Al Kawas S, Samsudin ABR, Kandile NG, Harding DRK, et al. Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental Pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration. Int J Nanomedicine. 2020;15:7775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou X, Tenaglio S, Esworthy T, Hann SY, Cui H, Webster TJ, et al. Three-dimensional printing biologically inspired dna-based gradient scaffolds for cartilage tissue regeneration. ACS Appl Mater Interfaces. 2020;12:33219–28.

    Article  CAS  PubMed  Google Scholar 

  125. Chocarro-Wrona C, de Vicente J, Antich C, Jiménez G, Martínez-Moreno D, Carrillo E, et al. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med. 2021;6:e10192.

    Article  CAS  PubMed  Google Scholar 

  126. Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, et al. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther. 2018;9:329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liang Y, Idrees E, Szojka ARA, Andrews SHJ, Kunze M, Mulet-Sierra A, et al. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater. 2018;80:131–43.

    Article  CAS  PubMed  Google Scholar 

  128. Luo C, Xie R, Zhang J, Liu Y, Li Z, Zhang Y, et al. Low-temperature three-dimensional printing of tissue cartilage engineered with Gelatin Methacrylamide. Tissue Eng Part C Methods. 2020;26:306–16.

    Article  CAS  PubMed  Google Scholar 

  129. Xuan H, Hu H, Geng C, Song J, Shen Y, Lei D, et al. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration. Acta Biomater. 2020;105:97–110.

    Article  CAS  PubMed  Google Scholar 

  130. Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, et al. Preparation of high precision multilayer scaffolds based on melt electro-writing to repair cartilage injury. Theranostics. 2020;10:10214–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu J, Fang Q, Liu Y, Zhou Y, Ye Z, Tan WS. In situ ornamenting poly(epsilon-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells. Colloids Surf B Biointerfaces. 2021;197:111374.

    Article  CAS  PubMed  Google Scholar 

  132. Hong Y, Liu N, Zhou R, Zhao X, Han Y, Xia F, et al. Combination therapy using Kartogenin-based chondrogenesis and complex polymer scaffold for cartilage defect regeneration. ACS Biomater Sci Eng. 2020;6:6276–84.

    Article  CAS  PubMed  Google Scholar 

  133. Jia Z, Zhu F, Li X, Liang Q, Zhuo Z, Huang J, et al. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. Mater Sci Eng C Mater Biol Appl. 2019;99:541–51.

    Article  CAS  PubMed  Google Scholar 

  134. Yu X, Hu Y, Zou L, Yan S, Zhu H, Zhang K, et al. A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage. Acta Biomater. 2021;121:288–302.

    Article  CAS  PubMed  Google Scholar 

  135. Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Biomed Mater. 2020;16:035021.

    Article  Google Scholar 

  136. Gao F, Xu Z, Liang Q, Li H, Peng L, Wu M, et al. Osteochondral regeneration with 3D-Printed biodegradable high-strength supramolecular polymer reinforced-Gelatin Hydrogel Scaffolds. Adv Sci (Weinh). 2019;6:1900867.

    Article  CAS  Google Scholar 

  137. Marmotti A, Mattia S, Castoldi F, Barbero A, Mangiavini L, Bonasia DE, et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells Int. 2017;2017:1732094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Qin Y, Li G, Wang C, Zhang D, Zhang L, Fang H, et al. Biomimetic bilayer scaffold as an incubator to induce sequential Chondrogenesis and Osteogenesis of adipose derived stem cells for construction of Osteochondral tissue. ACS Biomater Sci Eng. 2020;6:3070–80.

    Article  CAS  PubMed  Google Scholar 

  139. Kim HS, Mandakhbayar N, Kim HW, Leong KW, Yoo HS. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials. 2021;269:120214.

    Article  CAS  PubMed  Google Scholar 

  140. Wang C, Yue H, Huang W, Lin X, Xie X, He Z, et al. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-beta1 for osteochondral tissue regeneration. Biofabrication. 2020;12:025030.

    Article  CAS  PubMed  Google Scholar 

  141. Xu D, Cheng G, Dai J, Li Z. Bi-layered composite scaffold for repair of the Osteochondral defects. Adv Wound Care (New Rochelle). 2020;10:401–14.

    Article  PubMed  Google Scholar 

  142. Zhao Y, Ding X, Dong Y, Sun X, Wang L, Ma X, et al. Role of the calcified cartilage layer of an integrated trilayered silk fibroin scaffold used to regenerate osteochondral defects in Rabbit knees. ACS Biomater Sci Eng. 2020;6:1208–16.

    Article  CAS  PubMed  Google Scholar 

  143. Li N, Xue F, Zhang H, Sanyour HJ, Rickel AP, Uttecht A, et al. Fabrication and characterization of pectin hydrogel nanofiber scaffolds for differentiation of mesenchymal stem cells into vascular cells. ACS Biomater Sci Eng. 2019;5:6511–9.

    Article  CAS  PubMed  Google Scholar 

  144. Bury MI, Fuller NJ, Sturm RM, Rabizadeh RR, Nolan BG, Barac M, et al. The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration. Sci Rep. 2021;11:2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu J, Xu HH, Zhou H, Weir MD, Chen Q, Trotman CA. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering. Acta Biomater. 2013;9:4688–97.

    Article  CAS  PubMed  Google Scholar 

  146. Liu J, Zhou H, Weir MD, Xu HH, Chen Q, Trotman CA. Fast-degradable microbeads encapsulating human umbilical cord stem cells in alginate for muscle tissue engineering. Tissue Eng Part A. 2012;18:2303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Xu Q, Shanti RM, Zhang Q, Cannady SB, O'Malley BW Jr, Le AD. A gingiva-derived mesenchymal stem cell-laden porcine small intestinal submucosa extracellular matrix construct promotes myomucosal regeneration of the tongue. Tissue Eng Part A. 2017;23:301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Salem SA, Rashidbenam Z, Jasman MH, Ho CCK, Sagap I, Singh R, et al. Incorporation of smooth muscle cells derived from human adipose stem cells on poly(Lactic-co-Glycolic Acid) scaffold for the reconstruction of subtotally resected urinary bladder in athymic rats. Tissue Eng Regen Med. 2020;17:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shrestha KR, Jeon SH, Jung AR, Kim IG, Kim GE, Park YH, et al. Stem cells seeded on multilayered scaffolds implanted into an injured bladder rat model improves bladder function. Tissue Eng Regen Med. 2019;16:201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Quarta M, Cromie M, Chacon R, Blonigan J, Garcia V, Akimenko I, et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun. 2017;8:15613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Trevisan C, Fallas MEA, Maghin E, Franzin C, Pavan P, Caccin P, et al. Generation of a functioning and self-renewing diaphragmatic muscle construct. Stem Cells Transl Med. 2019;8:858–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xing Y, Shi S, Zhang Y, Liu F, Zhu L, Shi B, et al. Construction of engineered myocardial tissues in vitro with cardiomyocytelike cells and a polylacticcoglycolic acid polymer. Mol Med Rep. 2019;20:2403–9.

    CAS  PubMed  Google Scholar 

  153. Mombini S, Mohammadnejad J, Bakhshandeh B, Narmani A, Nourmohammadi J, Vahdat S, et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol. 2019;140:278–87.

    Article  CAS  PubMed  Google Scholar 

  154. Zhou Z, Yan H, Liu Y, Xiao D, Li W, Wang Q, et al. Adipose-derived stem-cell-implanted poly(-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen Med. 2018;13:331–42.

    Article  CAS  PubMed  Google Scholar 

  155. Izadi MR, Habibi A, Khodabandeh Z, Nikbakht M. Synergistic effect of high-intensity interval training and stem cell transplantation with amniotic membrane scaffold on repair and rehabilitation after volumetric muscle loss injury. Cell Tissue Res. 2021;383:765–79.

    Article  CAS  PubMed  Google Scholar 

  156. Takanari K, Hashizume R, Hong Y, Amoroso NJ, Yoshizumi T, Gharaibeh B, et al. Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials. 2017;113:31–41.

    Article  CAS  PubMed  Google Scholar 

  157. Chiu CH, Chang TH, Chang SS, Chang GJ, Chen AC, Cheng CY, et al. Application of bone marrow-derived mesenchymal stem cells for muscle healing after contusion injury in mice. Am J Sports Med. 2020;48:1226–35.

    Article  PubMed  Google Scholar 

  158. Talovic M, Patel K, Schwartz M, Madsen J, Garg K. Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. J Tissue Eng Regen Med. 2019;13:1830–42.

    Article  CAS  PubMed  Google Scholar 

  159. Zsedenyi A, Farkas B, Abdelrasoul GN, Romano I, Gyukity-Sebestyen E, Nagy K, et al. Gold nanoparticle-filled biodegradable photopolymer scaffolds induced muscle remodeling: in vitro and in vivo findings. Mater Sci Eng C Mater Biol Appl. 2017;72:625–30.

    Article  CAS  PubMed  Google Scholar 

  160. Mahmoudifard M, Soleimani M, Hatamie S, Zamanlui S, Ranjbarvan P, Vossoughi M, et al. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Biomed Mater. 2016;11:025006.

    Article  PubMed  CAS  Google Scholar 

  161. Hosseinzadeh S, Mahmoudifard M, Mohamadyar-Toupkanlou F, Dodel M, Hajarizadeh A, Adabi M, et al. The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells. Bioprocess Biosyst Eng. 2016;39:1163–72.

    Article  CAS  PubMed  Google Scholar 

  162. Gálvez-Montón C, Bragós R, Soler-Botija C, Díaz-Güemes I, Prat-Vidal C, Crisóstomo V, et al. Noninvasive assessment of an engineered bioactive graft in myocardial infarction: impact on cardiac function and scar healing. Stem Cells Transl Med. 2017;6:647–55.

    Article  CAS  PubMed  Google Scholar 

  163. Im GB, Kim YH, Kim YJ, Kim SW, Jung E, Jeong GJ, et al. Enhancing the wound healing effect of conditioned medium collected from mesenchymal stem cells with high passage number using bioreducible nanoparticles. Int J Mol Sci. 2019;20:4835.

    Article  CAS  PubMed Central  Google Scholar 

  164. Millán-Rivero JE, Martínez CM, Romecín PA, Aznar-Cervantes SD, Carpes-Ruiz M, Cenis JL, et al. Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther. 2019;10:126.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Murugan Girija D, Kalachaveedu M, Ranga Rao S, Subbarayan R. Transdifferentiation of human gingival mesenchymal stem cells into functional keratinocytes by Acalypha indica in three-dimensional microenvironment. J Cell Physiol. 2018;233:8450–7.

    Article  CAS  PubMed  Google Scholar 

  166. Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, AkbarzadehKhiyavi A. Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Mater Sci Eng C Mater Biol Appl. 2021;120:111752.

    Article  CAS  PubMed  Google Scholar 

  167. Wang J, Chen Y, Zhou G, Chen Y, Mao C, Yang M. Polydopamine coated antheraea pernyi (a. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl Mater Interfaces. 2019;11:34736–43.

    Article  CAS  PubMed  Google Scholar 

  168. Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Taghdiri Nooshabadi V, Farzamfar S, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study. J Biomed Mater Res A. 2020;108:545–56.

    Article  CAS  PubMed  Google Scholar 

  169. Forbes D, Russ B, Kilani R, Ghahary A, Jalili R. Liquid dermal scaffold with adipose-derived stem cells improve tissue quality in a murine model of impaired wound healing. J Burn Care Res. 2019;40:550–7.

    Article  PubMed  Google Scholar 

  170. Buzgo M, Plencner M, Rampichova M, Litvinec A, Prosecka E, Staffa A, et al. Poly-epsilon-caprolactone and polyvinyl alcohol electrospun wound dressings: adhesion properties and wound management of skin defects in rabbits. Regen Med. 2019;14:423–45.

    Article  CAS  PubMed  Google Scholar 

  171. Burmeister DM, Stone R, Wrice N, Laborde A, Becerra SC, Natesan S, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns. Stem Cells Transl Med. 2018;7:360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo Wp A, Kumar Satapathy M, et al. New insight into natural extracellular matrix: genipin cross-linked adipose-derived stem cell extracellular matrix gel for tissue engineering. Int J Mol Sci. 2020;21:4864.

    Article  CAS  PubMed Central  Google Scholar 

  173. Hazeri Y, Irani S, Zandi M, Pezeshki-Modaress M. Polyvinyl alcohol/sulfated alginate nanofibers induced the neuronal differentiation of human bone marrow stem cells. Int J Biol Macromol. 2020;147:946–53.

    Article  CAS  PubMed  Google Scholar 

  174. Jiang J, Dai C, Liu X, Dai L, Li R, Ma K, et al. Implantation of regenerative complexes in traumatic brain injury canine models enhances the reconstruction of neural networks and motor function recovery. Theranostics. 2021;11:768–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Luo L, Albashari AA, Wang X, Jin L, Zhang Y, Zheng L, et al. Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair. Stem Cells Int. 2018;2018:2398521.

    PubMed  PubMed Central  Google Scholar 

  176. Syu WZ, Chen SG, Chan JY, Wang CH, Dai NT, Huang SM. The potential of acellular dermal matrix combined with neural stem cells induced from human adipose-derived stem cells in nerve tissue engineering. Ann Plast Surg. 2019;82:S108–18.

    Article  CAS  PubMed  Google Scholar 

  177. Raynald, Shu B, Liu XB, Zhou JF, Huang H, Wang JY, et al. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther. 2019;25:951–64.

    Article  CAS  Google Scholar 

  178. Darvishi M, Ghasemi Hamidabadi H, Sahab Negah S, Moayeri A, Tiraihi T, Mirnajafi-Zadeh J, et al. PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells. Iran J Basic Med Sci. 2020;23:431–8.

    PubMed  PubMed Central  Google Scholar 

  179. Zhang J, Cheng T, Chen Y, Gao F, Guan F, Yao M. A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice. Biomed Mater. 2020;15:035020.

    Article  CAS  PubMed  Google Scholar 

  180. Rashedi I, Talele N, Wang XH, Hinz B, Radisic M, Keating A. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One. 2017;12:e0187348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Joshi J, Brennan D, Beachley V, Kothapalli CR. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. J Biomed Mater Res A. 2018;106:3303–12.

    Article  CAS  PubMed  Google Scholar 

  182. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng Part A. 2011;17:1363–73.

    Article  CAS  PubMed  Google Scholar 

  183. Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med. 2017;11:1002–10.

    Article  CAS  PubMed  Google Scholar 

  184. Guan J, Wang F, Li Z, Chen J, Guo X, Liao J, et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 2011;32:5568–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B Biointerfaces. 2015;134:346–54.

    Article  CAS  PubMed  Google Scholar 

  186. Sreerekha PR, Menon D, Nair SV, Chennazhi KP. Fabrication of electrospun poly (lactide-co-glycolide)-fibrin multiscale scaffold for myocardial regeneration in vitro. Tissue Eng Part A. 2013;19:849–59.

    Article  CAS  PubMed  Google Scholar 

  187. Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513.

    Article  CAS  PubMed  Google Scholar 

  188. Rabbani S, Soleimani M, Imani M, Sahebjam M, Ghiaseddin A, Nassiri SM, et al. Regenerating heart using a novel compound and human wharton jelly mesenchymal stem cells. Arch Med Res. 2017;48:228–37.

    Article  CAS  PubMed  Google Scholar 

  189. Maureira P, Marie PY, Yu F, Poussier S, Liu Y, Groubatch F, et al. Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J Biomed Sci. 2012;19:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ceccaldi C, Bushkalova R, Alfarano C, Lairez O, Calise D, Bourin P, et al. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater. 2014;10:901–11.

    Article  CAS  PubMed  Google Scholar 

  191. Tong C, Li C, Xie B, Li M, Li X, Qi Z, et al. Generation of bioartificial hearts using decellularized scaffolds and mixed cells. Biomed Eng Online. 2019;18:71.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kai D, Wang QL, Wang HJ, Prabhakaran MP, Zhang Y, Tan YZ, et al. Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomater. 2014;10:2727–38.

    Article  CAS  PubMed  Google Scholar 

  193. Kameli SM, Khorramirouz R, Eftekharzadeh S, Fendereski K, Daryabari SS, Tavangar SM, et al. Application of tissue-engineered pericardial patch in rat models of myocardial infarction. J Biomed Mater Res A. 2018;106:2670–8.

    Article  CAS  PubMed  Google Scholar 

  194. Chen YL, Sun CK, Tsai TH, Chang LT, Leu S, Zhen YY, et al. Adipose-derived mesenchymal stem cells embedded in platelet-rich fibrin scaffolds promote angiogenesis, preserve heart function, and reduce left ventricular remodeling in rat acute myocardial infarction. Am J Transl Res. 2015;7:781–803.

    PubMed  PubMed Central  Google Scholar 

  195. Niu H, Mu J, Zhang J, Hu P, Bo P, Wang Y. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration. J Mater Sci Mater Med. 2013;24:1535–42.

    Article  CAS  PubMed  Google Scholar 

  196. Perea-Gil I, Gálvez-Montón C, Prat-Vidal C, Jorba I, Segú-Vergés C, Roura S, et al. Head-to-head comparison of two engineered cardiac grafts for myocardial repair: From scaffold characterization to pre-clinical testing. Sci Rep. 2018;8:6708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kajbafzadeh AM, Tafti SHA, Khorramirouz R, Sabetkish S, Kameli SM, Orangian S, et al. Evaluating the role of autologous mesenchymal stem cell seeded on decellularized pericardium in the treatment of myocardial infarction: an animal study. Cell Tissue Bank. 2017;18:527–38.

    Article  PubMed  Google Scholar 

  198. Taghiyar L, Gourabi H, Eslaminejad MB. Autologous transplantation of mesenchymal stem cells (MSCs) and scaffold in full-thickness articular cartilage. ClinicalTrials.gov. 2010. https://clinicaltrials.gov/ct2/show/NCT00850187.

  199. Suroto H. Mesenchymal stem cells and amniotic membrane composite for supraspinatus tendon repair augmentation. ClinicalTrials.gov. 2020. https://clinicaltrials.gov/ct2/show/NCT04670302

  200. Regeneration of maxillary bone cystic cavities by bio implant of MSHV-H cells associated to a cross-linked serum scaffold. ClinicalTrials.gov. 2016

  201. Redondo LM, García V, Peral B, Verrier A, Becerra J, Sánchez A, et al. Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg. 2018;46:222–9.

    Article  PubMed  Google Scholar 

  202. Bueno DF. Use of mesenchymal stem cells for alveolar bone tissue engineering for cleft lip and palate patients. ClinicalTrials.gov. 2020. https://clinicaltrials.gov/ct2/show/NCT01932164

  203. Brizuel C. Encapsulated mesenchymal stem cells for dental pulp regeneration. (RanoKure). ClinicalTrials.gov. 2020. https://clinicaltrials.gov/ct2/show/NCT03102879

  204. Mrozikiewicz-Rakowska B. Treatment of chronic wounds in diabetic foot syndrome with allogeneic adipose derived mesenchymal stem cells (1ABC). ClinicalTrials.gov. 2021. https://clinicaltrials.gov/ct2/show/NCT03865394

  205. Bayes-Genís A. Pericardial matrix With mesenchymal stem cells for the treatment of patients With infarcted myocardial tissue (PERISCOPE). ClinicalTrials.gov. 2021. https://clinicaltrials.gov/ct2/show/NCT03798353

  206. Tang C, Jin C, Li X, Li J, Du X, Yan C, et al. Evaluation of an autologous bone mesenchymal stem cell-derived extracellular matrix scaffold in a rabbit and minipig model of cartilage repair. Med Sci Monit. 2019;25:7342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gil P, Alonso-Bedate M, Barja de Quiroga G. Different levels of hyperoxia reversibly induce catalase activity in amphibian tadpoles. Free Radic Biol Med. 1987;3:137–46.

    Article  CAS  PubMed  Google Scholar 

  208. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells. 2014;6:195–202.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B Biointerfaces. 2015;134:346–54.

    Article  CAS  PubMed  Google Scholar 

  210. Xu Y, Peng J, Richards G, Lu S, Eglin D. Optimization of electrospray fabrication of stem cell-embedded alginate-gelatin microspheres and their assembly in 3D-printed poly(epsilon-caprolactone) scaffold for cartilage tissue engineering. J Orthop Translat. 2019;18:128–41.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Zhang P, Liu X, Guo P, Li X, He Z, Li Z, et al. Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration. Bioact Mater. 2021;6:3097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Agabalyan NA, Borys BS, Sparks HD, Boon K, Raharjo EW, Abbasi S, et al. Enhanced expansion and sustained inductive function of skin-derived precursor cells in computer-controlled stirred suspension bioreactors. Stem Cells Transl Med. 2017;6:434–43.

    Article  CAS  PubMed  Google Scholar 

  213. Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018;22:1428–42.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9:e435.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of Children’s Hospital of Mexico Federico Gomez. The authors thank Crimson Interactive Pvt. Ltd. (Enago)—https://www.enago.com/es/ for their assistance in manuscript translation and editing.

Author information

Authors and Affiliations

Authors

Contributions

R.A.G.V. and A.P.R. Undergraduate student. conceptualization, methodology, writing-original draft preparation, writing-review and editing. C.C.P.M. PhD. Conceptualization, writing-review and editing, final approval. C.S.G. PhD. Writing-review and editing, funding acquisition, final approval. N.E.B.V. PhD. conceptualization, methodology, writing-review and editing, supervision, funding acquisition, final approval.

Corresponding author

Correspondence to Nohra E. Beltran-Vargas.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest with respect to the research, authorship, and / or publication of this article.

Ethical statement

We do not report ethical issues for human and animal right.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Vilchis, R.A., Piedra-Ramirez, A., Patiño-Morales, C.C. et al. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 19, 325–361 (2022). https://doi.org/10.1007/s13770-021-00417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00417-1

Keywords

Navigation