Skip to main content
Log in

Evaluation and application of cryosectioning in undecalcified hard tissues in cartilage and bone regenerative medicine

  • Review Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

This article overall describes the development of histological method especially, cartilage and bone research in regenerative medicine. Kawamoto’s film method, which has been recently introduced into our laboratory, has been applied in various fields that make sectioning of hard tissues easier than the conventional method. Moreover, this method also does not require the time-consuming chemical fixation and/or decalcification process. Kawamoto method involves the use of the adhesive plastic film instead of a cover glass where the thin tissue sections are attached efficiently at low temperatures (-25°C). Furthermore, the histological method preserves the enzymatic activity in the fresh sections in comparison to that of chemically-treated tissue sections. In fact, we used this Kawamoto’s film method in one of our researches in which drug repositioning was employed for cartilage regeneration. Some of the Kawamoto-processed tissue sections are featured in this review article. Therefore, the application of this tissue preparation technique allowed effective and histological and histochemical studies within a shorter preparation time with ease and convenience. In the future, this Kawamoto method may offer further applications in the preparation of a more diverse tissues and samples not only in the preclinical but also in the clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer R, Vacanti JPP. Tissue engineering. Science 1993;260:920–926.

    Article  CAS  PubMed  Google Scholar 

  2. Hunsberger J, Atala A. Editorial: bringing regenerative medicine therapies to the 21st century. Curr Stem Cell Res Ther 2014;10:1.

    Article  PubMed  Google Scholar 

  3. Ochi M, Nakasa T, Kamei G, Usman MA, El Mahmoud H. Regenerative medicine in orthopedics using cells, scaffold, and microRNA. J Orthop Sci 2014;19:521–528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rahman RA, Radzi MAzA, Sukri NM, Nazir, NM, Sha’ban M. Tissue engineering of articular cartilage: from bench to bed-side. Tissue Eng Regen Med 2015;12:1–11.

    Article  Google Scholar 

  5. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 2010;16:105–115.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Yang W, Lee S, Jo YH, Lee KM, Nemeno JG, Nam BM, et al. Effects of natural cartilaginous extracellular matrix on chondrogenic potential for cartilage cell transplantation. Transplant Proc 2014;46:1247–1250.

    Article  CAS  PubMed  Google Scholar 

  7. Choi KH, Song BR, Choi BH, Lee M, Park SR, Min, BHH. Cartilage tissue engineering using chondrocyte-derived extracellular matrix scaffold suppressed vessel invasion during chondrogenesis of mesenchymal stem cells in vivo. Tissue Eng Regen Med 2012;9:43–50.

    Article  CAS  Google Scholar 

  8. Yang JW, Heo MS, Lee CH, Moon, SW, Min BH, Choi BH, et al. The effect of the cell-derived extracellular matrix membrane on wound adhesions in rabbit strabismus surgery. Tissue Eng Regen Med 2014;11:155–162.

    Article  CAS  Google Scholar 

  9. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SGG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007; 13:1–10.

    CAS  PubMed  Google Scholar 

  10. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 2003;85(suppl 2):45–57.

    PubMed  Google Scholar 

  11. Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 2010;38:880–890.

    Article  PubMed  Google Scholar 

  12. Cook SD, Patron LP, Salkeld SL, Rueger DCC. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 2003;85(Suppl 3):116–123.

    PubMed  Google Scholar 

  13. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76:579–592.

    CAS  PubMed  Google Scholar 

  14. O’Driscoll SW, Keeley FW, Salter RBB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major fullthickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 1988; 70:595–606.

    PubMed  Google Scholar 

  15. Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A. A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat (Basel) 1992;143:335–340.

    Article  CAS  Google Scholar 

  16. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86:455–464.

    PubMed  Google Scholar 

  17. Rutgers M, Van Pelt MJP, Dhert WJA, Creemers LB, Saris DBF. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage. Osteoarthritis Cartilage 2010;18:12–23.

    Article  CAS  PubMed  Google Scholar 

  18. Ovalle WK, Nahirney PC. Cartilage and bone. In: Netter’s Essential Histology, 2nd ed. Philadelpia: Saunders Elsevier Inc; 2013. p.131–156

    Google Scholar 

  19. Mescher AL. Junqueira’s Basic Histology, 13th ed. New York: McGraw-Hill Co.; 2013. p.130–159

    Google Scholar 

  20. Vigorita VJJ. The bone biopsy protocol for evaluating osteoporosis and osteomalacia. Am J Surg Pathol 1984;8:925–930.

    Article  CAS  PubMed  Google Scholar 

  21. Hahn M, Vogel M, Delling G. Undecalcified preparation of bone tissue: report of technical experience and development of new methods. Virchows Arch A Pathol Anat Histopathol 1991;418:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ries WL. Techniques for Sectioning undecalcified bone tissue using microtomes. In: An YH, Martin KL, editors. Handbook of histology methods for bone and cartilage. New York: Human Press Inc.; 2003. p.221–232

    Google Scholar 

  23. Callis GM. Bone. In: Bancroft JD, Gawble M, editors. Theory and practice of histological techniques. 6th ed. Philadelpia: Elsevier; 2008. p.333–364.

    Chapter  Google Scholar 

  24. Hodgson SF, Johnson KA, Muhs JM, Lufkin EG, McCarthy JTT. Outpatient percutaneous biopsy of the iliac crest: methods, morbidity, and patient acceptance. Mayo Clin Proc 1986;61:28–33.

    Article  CAS  PubMed  Google Scholar 

  25. Mody N, Tintut Y, Radcliff K, Demer LLL. Vascular calcification and its relation to bone calcification: possible underlying mechanisms. J Nucl Cardiol 2003;10:177–183.

    Article  PubMed  Google Scholar 

  26. McClure J, Smith PSS. Consequences of avascular necrosis of the femoral head in aluminium-related renal osteodystrophy and the role of endochondral ossification in the repair process. J Clin Pathol 1983;36:260–268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McLendon RE, Roggli VL, Foster WL Jr, Becsey D. Carcinoma of the lung with osseous stromal metaplasia. Arch Pathol Lab Med 1985;109: 1051–1053.

    CAS  PubMed  Google Scholar 

  28. Bussolati G, A fixation-decalcification procedure for bone biopsies. Histopathology 1978;2:329–334.

    Article  CAS  PubMed  Google Scholar 

  29. Clark PGG. A comparison of decalcifying methods. Am J Clin Pathol 1954; 24:1113–1136.

    CAS  PubMed  Google Scholar 

  30. Eggert FM, Germain JPP. Rapid demineralization in acidic buffers. Histochemistry 1979;59:215–224.

    Article  CAS  PubMed  Google Scholar 

  31. Forssmann WG, Ito S, Weihe E, Aoki A, Dym M, Fawcett DWW. An improved perfusion fixation method for the testis. Anat Rec 1977;188:307–314.

    Article  CAS  PubMed  Google Scholar 

  32. Gussen R, Donahue D. Decalcification of Temporal Bones with Tetrasodium Edetate. Arch Otolaryngol 1965;82:110–114.

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson M, Hellström S, Albiin N. Decalcification by perfusion. A new method for rapid softening of temporal bones. Histol Histopathol 1991; 6:415–420.

    CAS  PubMed  Google Scholar 

  34. Matthews JB, Mason GII. Influence of decalcifying agents on immunoreactivity of formalin-fixed, paraffin-embedded tissue. Histochem J 1984;16: 771–787.

    Article  CAS  PubMed  Google Scholar 

  35. Sterchi GCD. Decalcification of bone: literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J Histotech 1998;21:49–58.

    Google Scholar 

  36. Sano K, Sekine J, Pe MB, Inokuchi T. Bromodeoxyuridine immunohistochemistry for evaluating age-related changes in the rat mandibular condyle decalcified by intravenous infusion. Biotech Histochem 1992;67: 297–302.

    Article  CAS  PubMed  Google Scholar 

  37. Reineke T, Jenni B, Abdou MT, Frigerio S, Zubler P, Moch H, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines. Am J Surg Pathol 2006; 30:892–896.

    Article  PubMed  Google Scholar 

  38. Roncaroli F, Mussa B, Bussolati G. Microwave oven for improved tissue fixation and decalcification. Pathologica 1991;83:307–310.

    CAS  PubMed  Google Scholar 

  39. Vongsavan N, Matthews B, Harrison GK. Decalcification of teeth in a microwave oven. Histochem J 1990;22:377–380.

    Article  CAS  PubMed  Google Scholar 

  40. Kawamoto T, Shimizu M. A method for preparing 2-to 50-micron-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem Cell Biol 2000;113:331–339.

    CAS  PubMed  Google Scholar 

  41. Kawamoto T. Use of a new adhesive film for the preparation of multipurpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 2003;66:123–143.

    Article  PubMed  Google Scholar 

  42. Kawamoto T, Kawamoto K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamot’s film method (2012). Methods Mol Biol 2014;1130:149–164.

    Article  CAS  PubMed  Google Scholar 

  43. Yeo JE, Nam BM, Yang W, Jo YH, Lee S, Nemeno JG, et al. Fragmin/protamine microparticle carriers as a drug repositioning strategy for cell transplantation. Transplant Proc 2013;45:3122–3126.

    Article  CAS  PubMed  Google Scholar 

  44. Nemeno JG, Lee S, Yang W, Lee KM, Lee JII. Applications and implications of heparin and protamine in tissue engineering and regenerative medicine. Biomed Res Int 2014;2014:936196.

    Article  Google Scholar 

  45. Mitani G, Sato M, Lee JI, Kaneshiro N, Ishihara M, Ota N, et al. The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 2009;9:17.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lee JI, Sato M, Kim HW, Mochida J. Transplantation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee. Euro Cell Mater 2011;22:275–290.

    CAS  Google Scholar 

  47. Islam A, Frisch B. Plastic embedding in routine histology. I: preparation of semi-thin sections of undecalcified marrow cores. Histopathology 1985; 9:1263–1274.

    Article  CAS  PubMed  Google Scholar 

  48. Watts RH, Green D, Howells GRR. Improvements in histological techniques for epoxy-resin embedded bone specimens. Stain Technol 1971;56: 155–161.

    Google Scholar 

  49. Mizuno M, Kobayashi S, Takebe T, Kan H, Yabuki Y, Matsuzaki T, et al. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells 2014;32:816–821.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soojung Lee or Jeong Ik Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Yoon, J., Park, J.H. et al. Evaluation and application of cryosectioning in undecalcified hard tissues in cartilage and bone regenerative medicine. Tissue Eng Regen Med 12 (Suppl 2), 94–104 (2015). https://doi.org/10.1007/s13770-015-0433-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0433-4

Key Words

Navigation