Skip to main content
Log in

Green synthesis of nanostructured SiCs by using natural biopolymers (guar, tragacanth, Arabic, and xanthan gums) for oxidative desulfurization of model fuel

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous SiC ceramics were prepared using different natural biopolymers (guar, tragacanth, Arabic, and xanthan gum) as both template and carbon sources. Natural biopolymers are safe, biocompatible, and inexpensive materials that can be green candidates for carbon sources. Low-temperature magnesiothermic technique was used to form porous silicon carbide. In this study, tetraethylorthosilicate was prepared by sol–gel method and used as silica precursor. The mixture of silica and carbon sources was carbonized under argon atmosphere at 750 °C, and then, the reaction continued by adding magnesium powder at 700 °C. Products were characterized using SEM, BET/BJH, XRD, FTIR, and Raman spectroscopy. The produced SiC materials showed mesoporous structures with high surface area and identical structures related to their carbon precursors. The results suggest that the natural gums can be potentially used as carbon templates in controlled formation of nanostructures. Also the synthesized silicon carbide nanostructures were used as catalyst supports in oxidative desulfurization of a model fuel. For this purpose, MoO3 was immobilized on the surface of SiC supports by using peroxo molybdenum complex. Such excellent catalytic performance was attributed in the presence of silicon carbide (99, 98, 94, and 93% conversion for SiCs produced from Arabic, xanthan, guar, and tragacanth, respectively).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullah WNW, Bakar WAWA, Ali R, Embong Z (2015) Oxidative desulfurization of commercial diesel catalyzed by tert-butyl hydroperoxide polymolybdate on alumina: optimization by Box–Behnken design. Clean Technol Environ Policy 17:433–441

    Article  CAS  Google Scholar 

  • Afsharpour M, Rostami Amraee A (2017) Synthesis of bio-inspired N-doped SiC and investigation of its synergetic effects on Mo catalysts in oxidative desulfurization reaction. Mol Catal 436:285–293

    Article  CAS  Google Scholar 

  • Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hanke T, Buchner B (2010) Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10:992–995

    Article  CAS  Google Scholar 

  • Bakar WAWA, Ali R, Kadir AAA, Mokhtar WNAW (2015) The role of molybdenum oxide based catalysts on oxidative desulfurization of diesel fuel. Mod Chem Appl 3:1000150

    Google Scholar 

  • Bechelany M, Brioude A, Cornu D, Ferro G, Miele P (2007) A Raman spectroscopy study of individual SiC nanowires. Adv Funct Mater 17:939–943

    Article  CAS  Google Scholar 

  • Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG (2010) Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechol 85:879–890

    Article  CAS  Google Scholar 

  • Cedeno-Caero L, Alvarez-Amparan MA (2014) Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds. React Kinet Mech Catal 113:115–131

    Article  CAS  Google Scholar 

  • Chica A, Corma A, Dómine ME (2006) Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J Catal 242:299–308

    Article  CAS  Google Scholar 

  • Choyke WJ, Matsunami H, Pensl G (1997) Silicon carbide: a review of fundamental questions and applications to current device technology. Akademie Verlag, Berlin

    Google Scholar 

  • Choyke WJ, Matsunami H, Pensl G (2004) Silicon carbide: recent major advances. Springer, Berlin

    Book  Google Scholar 

  • Daşdelen Z, Yıldız Y, Eriş S, Şen F (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B Environ 219:511–516

    Article  CAS  Google Scholar 

  • Dasog M, Rachinsky C, Veinot JG (2011) From Si and C encapsulated SiO2 to SiC: exploring the influence of sol–gel polymer substitution on thermally induced nanocrystal formation. J Mater Chem 21:12422–12427

    Article  CAS  Google Scholar 

  • Dasog M, Smith LF, Purkait TK, Veinot JG (2013) Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem Commun 49:7004–7006

    Article  CAS  Google Scholar 

  • Davis SA, Breulmann M, Rhodes KH, Zhang B, Mann S (2001) Template-directed assembly using nanoparticle building blocks: a nanotectonic approach to organized materials. Chem Mater 13:3218–3226

    Article  CAS  Google Scholar 

  • De Filippis P, Scarsella M (2008) Peroxyformic acid formation: a kinetic study. Ind Eng Chem Res 47:973–975

    Article  CAS  Google Scholar 

  • Eddy Jr C, Gaskill D (2009) Silicon carbide as a platform for power electronics, DTIC Document.

  • Garcia-Gutierrez JL, Fuentes GA, Hernández-Terán ME, Garcia P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3–H2O2 system: The effect of system parameters on catalytic activity. Appl Catal A Gen 334:366–373

    Article  CAS  Google Scholar 

  • Haw KG, Bakar WAWA, Ali R, Chong JF, Kadir AAA (2010) Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel–acetonitrile system. Fuel Process Technol 91:1105–1112

    Article  CAS  Google Scholar 

  • He L, Li H, Zhu W, Guo J, Jiang X, Lu J, Yan Y (2008) Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids. Ind Eng Chem Res 47:6890–6895

    Article  CAS  Google Scholar 

  • Henderson EJ, Kelly JA, Veinot JG (2009) Influence of HSiO sol − gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem Mater 21:5426–5434

    Article  CAS  Google Scholar 

  • Jayakumar R, Nagahama H, Furuike T, Tamura H (2008) Synthesis of phosphorylated chitosan by novel method and its characterization. Int J Biol Macromol 42:335–339

    Article  CAS  Google Scholar 

  • Jiang Z, Ma Y, Zhou Y, Hu S, Han C, Pei C (2013) Facile fabrication of three-dimensional mesoporous Si/SiC composites via one-step magnesiothermic reduction at relative low temperature. Mater Res Bull 48:4139–4145

    Article  CAS  Google Scholar 

  • Jin W, Tian Y, Wang G, Zeng D, Xu Q, Cui J (2017) Ultra-deep oxidative desulfurization of fuel with H2O2 catalyzed by molybdenum oxide supported on alumina modified by Ca2+. RSC Adv 7:48208–48213

    Article  CAS  Google Scholar 

  • Ledoux MJ, Pham-Huu C (2001) Silicon carbide: a novel catalyst support for heterogeneous catalysis. Cattech 5:226–246

    Article  CAS  Google Scholar 

  • Lewis MA (1992) The effects of mixtures and other environmental modifying factors on the toxicities of surfactants to freshwater and marine life. Water Res 26:1013–1023

    Article  CAS  Google Scholar 

  • Magnani G, Sico G, Brentari A, Fabbri P (2014) Solid-state pressureless sintering of silicon carbide below 2000 °C. J Eur Ceram Soc 34:4095–4098

    Article  CAS  Google Scholar 

  • Mélinon P, Masenelli B, Tournus F, Perez A (2007) Playing with carbon and silicon at the nanoscale. Nat Mater 6:479–490

    Article  CAS  Google Scholar 

  • Mjalli FS, Ahmed OU, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM (2014) Deep oxidative desulfurization of liquid fuels. Rev Chem Eng 30:337–378

    Article  CAS  Google Scholar 

  • Moser WR (1996) Advanced catalysts and nanostructured materials: modern synthetic methods. Academic Press, Cambridge

    Google Scholar 

  • Nakashima SI, Harima H (1997) Raman investigation of SiC polytypes. Phys Status Solidi (a) 162:39–64

    Article  CAS  Google Scholar 

  • Nakashima S, Higashihira M, Maeda K, Tanaka H (2003) Raman scattering characterization of polytype in silicon carbide ceramics: comparison with X-ray diffraction. J Am Ceram Soc 86:823–829

    Article  CAS  Google Scholar 

  • Prabaharan M, Jayakumar R (2009) Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Boil Macromol 44:320–325

    Article  CAS  Google Scholar 

  • Prasad VVDN, Jeong KE, Chae HJ, Kim CU, Jeong SY (2008) Oxidative desulfurization of 4,6-dimethyl dibenzothiophene and light cycle oil over supported molybdenum oxide catalysts. Catal Commun 9:1966–1969

    Article  CAS  Google Scholar 

  • Rao JB, Kush D, Bhargava N (2012) Production and characterization of nano structured silicon carbide by high energy ball milling. J Miner Mater Charact Eng 11:529–532

    Google Scholar 

  • Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  • Selby H, Wynne W (1973) Agar. Industrial gums. Academic Press, New York, pp 29–48

    Book  Google Scholar 

  • Sen B, Kuzu S, Demir E, Akocak S, Sen F (2017) Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine–borane. Int J Hydrogen Energy 42:23299–23306

    Article  CAS  Google Scholar 

  • Tian Y, Yao Y, Zhi Y, Yan L, Lu Sh (2015) Combined extraction-oxidation system for oxidative desulfurization (ODS) of a model fuel. Energy Fuel 29:618–625

    Article  CAS  Google Scholar 

  • Wen L, Ma Y, Dai B, Zhou Y, Liu J, Pei C (2013) Preparation and dielectric properties of SiC nanowires self-sacrificially templated by carbonated bacterial cellulose. Mater Res Bull 48:687–690

    Article  CAS  Google Scholar 

  • Wright NG, Horsfall AB, Vassilevski K (2008) Prospects for SiC electronics and sensors. Mater Today 11:16–21

    Article  CAS  Google Scholar 

  • Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC Nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523

    Article  CAS  Google Scholar 

  • Yildiz Y, Okyay TO, Sen B, Gezer B, Kuzu S, Savk A, Demir E, Dasdelen Z, Sert H, Sen F (2017) Highly monodisperse pt/rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. Chem Select 2:697–701

    CAS  Google Scholar 

  • Zhang J, Bai X, Li X, Wang A, Ma X (2009) Preparation of MoO3–CeO2–SiO2 oxidative desulfurization catalysts by a sol–gel procedure. Chin J Catal 30:1017–1021

    Article  CAS  Google Scholar 

  • Zhao H, Nagy KL, Waples JS, Vance GF (2000) Surfactant-templated mesoporous silicate materials as sorbents for organic pollutants in water. Environ Sci Technol 34:4822–4827

    Article  CAS  Google Scholar 

  • Zhao B, Zhang H, Tao H, Tan Z, Jiao Z, Wu M (2011) Low temperature synthesis of mesoporous silicon carbide via magnesiothermic reduction. Mater Lett 65:1552–1555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this investigation by Chemistry and Chemical Engineering Research Center of Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Afsharpour.

Additional information

Responsibility editor: M. Abbaspour

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomand, E., Afsharpour, M. Green synthesis of nanostructured SiCs by using natural biopolymers (guar, tragacanth, Arabic, and xanthan gums) for oxidative desulfurization of model fuel. Int. J. Environ. Sci. Technol. 16, 2359–2372 (2019). https://doi.org/10.1007/s13762-018-1678-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1678-y

Keywords

Navigation