Skip to main content
Log in

Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

Transcranial alternating current stimulation (tACS) exhibits the capability to interact with endogenous brain oscillations using an external low-intensity sinusoidal current and influences cerebral function. Despite its potential benefits, the physiological mechanisms and effectiveness of tACS are currently a subject of debate and disagreement. The aims of our study are to (i) evaluate the neurological and behavioral impact of tACS by conducting repetitive sham-controlled experiments and (ii) propose criteria to evaluate effectiveness, which can serve as a benchmark to determine optimal individual-based tACS protocols. In this study, 15 healthy adults participated in the experiment over two visiting: sham and tACS (i.e., 5 Hz, 1 mA). During each visit, we used multimodal recordings of the participants’ brain, including simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), along with a working memory (WM) score to quantify neurological effects and cognitive changes immediately after each repetitive sham/tACS session. Our results indicate increased WM scores, hemodynamic response strength, and EEG power in theta and delta bands both during and after the tACS period. Additionally, the observed effects do not increase with prolonged stimulation time, as the effects plateau towards the end of the experiment. In conclusion, our proposed closed-loop scheme offers a promising advance for evaluating the effectiveness of tACS during the stimulation session. Specifically, the assessment criteria use participant-specific brain-based signals along with a behavioral output. Moreover, we propose a feedback efficacy score that can aid in determining the optimal stimulation duration based on a participant-specific brain state, thereby preventing the risk of overstimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The dataset and materials used for current study are available from the corresponding author on reasonable request.

Abbreviations

EEG:

Electroencephalography

fNIRS:

Functional near-infrared spectroscopy

HbO:

Concentration changes of oxyhemoglobin

HbR:

Concentration changes of de-oxyhemoglobin

HD-tACS:

High-definition transcranial alternating current stimulation

NIBS:

Non-invasive brain stimulation

PFC:

Prefrontal cortex

tACS:

Transcranial alternating current stimulation

tDCS:

Transcranial direct current stimulation

tES:

Transcranial electrical stimulation

TMS:

Transcranial magnetic stimulation

tRNS:

Transcranial random noise stimulation

WM:

Working memory

References

  1. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–44.

    Google Scholar 

  2. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.

    Google Scholar 

  3. Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9.

    Google Scholar 

  4. Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9(2):197–208.

    Google Scholar 

  5. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, Edwards DJ, Valero-Cabre A, Rotenberg A, Pascual-Leone A, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.

    Google Scholar 

  6. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383–93.

    Google Scholar 

  7. Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37(12):742–53.

    Google Scholar 

  8. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92.

    Google Scholar 

  9. Utz KS, Dimova V, Oppenlander K, Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology–a review of current data and future implications. Neuropsychologia. 2010;48(10):2789–810.

    Google Scholar 

  10. Yang D, Shin YI, Hong KS. Systemic review on transcranial electrical stimulation parameters and EEG/fNIRS features for brain diseases. Front Neurosci. 2021;15: 629323.

    Google Scholar 

  11. Lu H, Gallinaro JV, Rotter S. Network remodeling induced by transcranial brain stimulation: a computational model of tDCS-triggered cell assembly formation. Netw Neurosci. 2019;3(4):924–43.

    Google Scholar 

  12. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Google Scholar 

  13. Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.

    Google Scholar 

  14. Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010;1349:76–89.

    Google Scholar 

  15. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(Pt 1):293–301.

    Google Scholar 

  16. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.

    Google Scholar 

  17. Antal A, Kincses TZ, Nitsche MA, Paulus W. Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia. 2003;41(13):1802–7.

    Google Scholar 

  18. Antal A, Nitsche MA, Paulus W. Transcranial direct current stimulation and the visual cortex. Brain Res Bull. 2006;68(6):459–63.

    Google Scholar 

  19. Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res Rev. 2007;56(2):346–61.

    Google Scholar 

  20. Berryhill ME, Picasso L, Arnold R, Drowos D, Olson IR. Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia. 2010;48(5):1385–93.

    Google Scholar 

  21. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 2001;39(2–3):241–8.

    Google Scholar 

  22. Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80(3):751–64.

    Google Scholar 

  23. Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15(3):291–300.

    Google Scholar 

  24. Thut G, Schyns PG, Gross J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol. 2011;2:170.

    Google Scholar 

  25. Smith RJ, Ombao HC, Shrey DW, Lopour BA. Inference on long-range temporal correlations in human EEG data. IEEE J Biomed Health Inform. 2020;24(4):1070–9.

    Google Scholar 

  26. Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:279.

    Google Scholar 

  27. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.

    Google Scholar 

  28. Abend R, Jalon I, Gurevitch G, Sar-El R, Shechner T, Pine DS, Hendler T, Bar-Haim Y. Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatr. 2016;6(10): e913.

    Google Scholar 

  29. Supriya S, Siuly S, Wang H, Zhang YC. Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf Sci Syst. 2020;8(1):1–15.

    Google Scholar 

  30. Hsu WY, Zanto TP, Gazzaley A. Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimul. 2019;12(1):73–83.

    Google Scholar 

  31. Hsu W-Y, Zanto TP, Anguera JA, Lin Y-Y, Gazzaley A. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex. 2015;69:175–85.

    Google Scholar 

  32. Zhang H, Li R, Wen X, Li Q, Wu X. Altered time-frequency feature in default mode network of autism based on improved Hilbert-Huang transform. IEEE J Biomed Health Inform. 2021;25(2):485–92.

    Google Scholar 

  33. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, Veronezi BP, Nogueira BS, Aparicio LVM, Razza LB, et al. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med. 2017;376(26):2523–33.

    Google Scholar 

  34. Alexander M, Alagapan S, Lugo C, Mellin J, Lustenberger C, Rubinow D, Frohlich F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Trans Psychiatr. 2019;9:106.

    Google Scholar 

  35. Vosskuhl J, Huster RJ, Herrmann CS. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9:257.

    Google Scholar 

  36. Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, Birbaumer N, Soekadar SR. tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Front Cell Neurosci. 2016;10:120.

    Google Scholar 

  37. Kasten FH, Herrmann CS. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front Hum Neurosci. 2017;11:2.

    Google Scholar 

  38. Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27(1):158–71.

    Google Scholar 

  39. Hsu WY, Zanto TP, van Schouwenburg MR, Gazzaley A. Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation. PLoS ONE. 2017;12(5): e0178579.

    Google Scholar 

  40. Pollok B, Boysen AC, Krause V. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. Behav Brain Res. 2015;293:234–40.

    Google Scholar 

  41. Cappon D, D’Ostilio K, Garraux G, Rothwell J, Bisiacchi P. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation on automatic motor control. Brain Stimul. 2016;9(4):518–24.

    Google Scholar 

  42. Krause V, Meier A, Dinkelbach L, Pollok B. Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence. Front Behav Neurosci. 2016;10:4.

    Google Scholar 

  43. Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci. 2017;35(2):147–58.

    Google Scholar 

  44. D’Atri A, Romano C, Gorgoni M, Scarpelli S, Alfonsi V, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral 5 Hz transcranial alternating current stimulation on fronto-temporal areas modulates resting-state EEG. Sci Rep. 2017;7(1):15672.

    Google Scholar 

  45. Wischnewski M, Schutter D. After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol. 2017;128(11):2227–32.

    Google Scholar 

  46. Fehér KD, Nakataki M, Morishima Y. Phase-dependent modulation of signal transmission in cortical networks through tACS-induced neural oscillations. Front Hum Neurosci. 2017;11:471.

    Google Scholar 

  47. Onoda K, Kawagoe T, Zheng H, Yamaguchi S. Theta band transcranial alternating current stimulations modulates network behavior of dorsal anterior cingulate cortex. Sci Rep. 2017;7(1):3607.

    Google Scholar 

  48. Chai Y, Sheng J, Bandettini PA, Gao JH. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation. Hum Brain Mapp. 2018;39(5):2111–20.

    Google Scholar 

  49. Borghini G, Candini M, Filannino C, Hussain M, Walsh V, Romei V, Zokaei N, Cappelletti M. Alpha oscillations are causally linked to inhibitory abilities in ageing. J Neurosci. 2018;38(18):4418–29.

    Google Scholar 

  50. Huang YY, Pittenger C, Kandel ER. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc Natl Acad Sci USA. 2004;101(3):859–64.

    Google Scholar 

  51. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    Google Scholar 

  52. Popp F, Dallmer-Zerbe I, Philipsen A, Herrmann CS. Challenges of P300 modulation using transcranial alternating current stimulation (tACS). Front Psychol. 2019;10:476.

    Google Scholar 

  53. Ghafoor U, Yang D, Hong KS. Neuromodulatory effects of HD-tACS/tDCS on the prefrontal cortex: A resting-state fNIRS-EEG study. IEEE J Biomed Health Inform. 2021;26(5):2192–203.

    Google Scholar 

  54. Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ECoG LFP and Spikes. Nat Rev Neurosci. 2012;13(6):407–20.

    Google Scholar 

  55. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.

    Google Scholar 

  56. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.

    Google Scholar 

  57. Hong K-S, Ghafoor U, Khan MJ. Brain–machine interfaces using functional near-infrared spectroscopy: a review. Artif Life Robot. 2020;25(2):204–18.

    Google Scholar 

  58. Yang D, Huang R, Yoo S-H, Shin M-J, Yoon JA, Shin Y-I, Hong K-S. Detection of mild cognitive impairment using convolutional neural network: temporal-feature maps of functional near-infrared spectroscopy. Front Aging Neurosci. 2020;12:141–141.

    Google Scholar 

  59. Eggebrecht AT, White BR, Ferradal SL, Chen CX, Zhan YX, Snyder AZ, Dehghani H, Culver JP. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. Neuroimage. 2012;61(4):1120–8.

    Google Scholar 

  60. Rahman MA, Uddin MS, Ahmad M. Modeling and classification of voluntary and imagery movements for brain-computer interface from fNIR and EEG signals through convolutional neural network. Health Inf Sci Syst. 2019;7(1):22.

    Google Scholar 

  61. Christie B. Doctors revise declaration of Helsinki. Br Med J. 2000;321(7266):913.

    Google Scholar 

  62. Cole L, Giuffre A, Ciechanski P, Carlson HL, Zewdie E, Kuo HC, Kirton A. Effects of high-definition and conventional transcranial direct-current stimulation on motor learning in children. Front Neurosci. 2018;12:787.

    Google Scholar 

  63. Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Phys Med Biol. 2006;51(5):N91-98.

    Google Scholar 

  64. Vajargah KF, Benis SG, Golshan HM. Detection of the quality of vital signals by the Monte Carlo Markov Chain (MCMC) method and noise deleting. Health Inf Sci Syst. 2021;9(1):1–10.

    Google Scholar 

  65. Bajaj V, Taran S, Sengur A. Emotion classification using flexible analytic wavelet transform for electroencephalogram signals. Health Inf Sci Syst. 2018;6:1–7.

    Google Scholar 

  66. Nunez-Ibero M, Camino-Pontes B, Diez I, Erramuzpe A, Martinez-Gutierrez E, Stramaglia S, Alvarez-Cienfuegos JO, Cortes JM. A controlled thermoalgesic stimulation device for exploring novel pain perception biomarkers. IEEE J Biomed Health Inform. 2021;25(8):2948–57.

    Google Scholar 

  67. Wu Q, Wang X, Liu H, Zeng L. Learning hemodynamic effect of transcranial infrared laser stimulation using longitudinal data analysis. IEEE J Biomed Health Inform. 2020;24(6):1772–9.

    Google Scholar 

  68. Zrenner C, Belardinelli P, Müller-Dahlhaus F, Ziemann U. Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Front Cell Neurosci. 2016;10:92.

    Google Scholar 

  69. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18(2):86–100.

    Google Scholar 

  70. Patel R, Dawidziuk A, Darzi A, Singh H, Leff DR. Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics. 2020;7(2): 020901.

    Google Scholar 

  71. Berger A, Pixa NH, Steinberg F, Doppelmayr M. Brain oscillatory and hemodynamic activity in a bimanual coordination task following transcranial alternating current stimulation (tACS): a combined EEG-fNIRS study. Front Behav Neurosci. 2018;12:67–67.

    Google Scholar 

  72. Chiarelli AM, Zappasodi F, Di Pompeo F, Merla A. Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics. 2017;4(4): 041411.

    Google Scholar 

  73. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29(2–3):169–95.

    Google Scholar 

  74. Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci. 2013;16(2):130–8.

    Google Scholar 

  75. Tan WJ, Xu Y, Liu P, Liu CY, Li YJ, Du YR, Chen C, Wang YP, Zhang YC. A method of VR-EEG scene cognitive rehabilitation training. Health Inf Sci Syst. 2021;9:1–9.

    Google Scholar 

  76. Yaqub MA, Hong KS, Zafar A, Kim CS. Control of transcranial direct current stimulation duration by assessing functional connectivity of near-infrared spectroscopy signals. Int J Neural Syst. 2022;32(1):2150050.

    Google Scholar 

  77. Ghafoor U, Lee JH, Hong KS, Park SS, Kim J, Yoo HR. Effects of acupuncture therapy on MCI patients using functional near-infrared spectroscopy. Front Aging Neurosci. 2019;11:237.

    Google Scholar 

  78. Yang D, Hong KS. Quantitative assessment of resting-state for mild cognitive impairment detection: a functional near-infrared spectroscopy and deep learning approach. J Alzheimers Dis. 2021;80(2):647–63.

    Google Scholar 

  79. Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage. 2013;74:266–75.

    Google Scholar 

  80. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7.

    Google Scholar 

  81. Rezaee Z, Dutta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuromodulation. 2020;23(3):341–65.

    Google Scholar 

  82. Rezaee Z, Ranjan S, Solanki D, Bhattacharya M, Srivastava MVP, Lahiri U, Dutta A. Feasibility of combining functional near-infrared spectroscopy with electroencephalography to identify chronic stroke responders to cerebellar transcranial direct current stimulation-a computational modeling and portable neuroimaging methodological study. Cerebellum. 2021;20(6):853–71.

    Google Scholar 

  83. Yaqub MA, Woo SW, Hong KS. Compact, portable, high-density functional near-infrared spectroscopy system for brain imaging. IEEE Access. 2020;8:128224–38.

    Google Scholar 

  84. Eggebrecht AT, Ferradal SL, Robichaux-Viehoever A, Hassanpour MS, Dehghani H, Snyder AZ, Hershey T, Culver JP. Mapping distributed brain function and networks with diffuse optical tomography. Nat Photon. 2014;8(6):448–54.

    Google Scholar 

  85. Zhao H, Frijia EM, Vidal Rosas E, Collins-Jones L, Smith G, Nixon-Hill R, Powell S, Everdell NL, Cooper RJ. Design and validation of a mechanically flexible and ultra-lightweight high-density diffuse optical tomography system for functional neuroimaging of newborns. Neurophotonics. 2021;8(1): 015011.

    Google Scholar 

  86. Giovannella M, Ibañez D, Gregori-Pla C, Kacprzak M, Mitjà G, Ruffini G, Durduran T. Concurrent measurement of cerebral hemodynamics and electroencephalography during transcranial direct current stimulation. Neurophotonics. 2018;5(1): 015001.

    Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation (NRF) of Korea under the Ministry of Science and ICT, Republic of Korea (grant no. RS-2023–00207954).

Author information

Authors and Affiliations

Authors

Contributions

DY—Designed the study, supervised its execution, analyzed the data and drafted the manuscript; UG—participated in designing the study and drafting the manuscript; AE—provided iterative critical commenting on the drafts of the manuscript. K-SH—suggested the theoretical aspects of the current study, corrected the manuscript, and supervised the entire process leading to the manuscript generation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Keum-Shik Hong.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The research paradigm was approved by the Human Research Ethics Committee of Pusan National University in compliance with the latest Declaration of Helsink.

Consent to participate

All participants in this study provided their informed consent for participation.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Ghafoor, U., Eggebrecht, A.T. et al. Effectiveness assessment of repetitive transcranial alternating current stimulation with concurrent EEG and fNIRS measurement. Health Inf Sci Syst 11, 35 (2023). https://doi.org/10.1007/s13755-023-00233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-023-00233-y

Keywords

Navigation