Skip to main content
Log in

Statistical sleep pattern modelling for sleep quality assessment based on sound events

  • Research
  • Published:
Health Information Science and Systems Aims and scope Submit manuscript

Abstract

A good sleep is important for a healthy life. Recently, several consumer sleep devices have emerged on the market claiming that they can provide personal sleep monitoring; however, many of them require additional hardware or there is a lack of scientific evidence regarding their reliability. In this paper we proposed a novel method to assess the sleep quality through sound events recorded in the bedroom. We used subjective sleep quality as training label, combined several machine learning approaches including kernelized self organizing map, hierarchical clustering and hidden Markov model, obtained the models to indicate the sleep pattern of specific quality level. The proposed method is different from traditional sleep stage based method, provides a new aspect of sleep monitoring that sound events are directly correlated with the sleep of a person.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.onosokki.co.jp/English/hp_e/products/keisoku/s_v/la1200.html.

  2. http://proav.roland.com/products/r-4_pro/.

  3. https://en.wikipedia.org/wiki/Zeo,_Inc.

  4. http://www.beddit.com/.

  5. https://www.fitbit.com/.

  6. http://sleep.urbandroid.org/.

  7. http://www.sleepcycle.com/.

References

  1. Åkerstedt T, Billiard M, Bonnet M, Ficca G, Garma L, Mariotti M, Salzarulo P, Schulz H. Awakening from sleep. Sleep Med Rev. 2002;6(4):267–86.

    Article  PubMed  Google Scholar 

  2. Behar J, Roebuck A, Domingos JS, Gederi E, Clifford GD. A review of current sleep screening applications for smartphones. Physiol. Meas. 2013;34(7):R29–46.

    Article  PubMed  Google Scholar 

  3. Berkhin P. A survey of clustering data mining techniques. In: Grouping multidimensional data. Berlin: Springer; 2006. p. 25–71.

  4. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus C, Vaughn B. The AASM manual for the scoring of sleep and associated events. Rules, Terminology and Technical Specifications. Darien, IL: American Academy of Sleep Medicine; 2012.

  5. Bonnet MH, Johnson LC. Relationship of arousal threshold to sleep stage distribution and subjective estimates of depth and quality of sleep. Sleep. 1978;1(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  6. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Lin M, Chen F, Lane ND, Cardone G, Wang R, Li T, Chen Y, Choudhury T, Campbell AT. Unobtrusive sleep monitoring using smartphones. In: 2013 7th International conference on pervasive computing technologies for healthcare and workshops. IEEE; 2013. p. 145–52.

  8. Choe EK, Kientz JA, Halko S, Fonville A, Sakaguchi D, Watson NF. Opportunities for computing to support healthy sleep behavior. In: CHI’10 extended abstracts on human factors in computing systems. New York: ACM; 2010. p. 3661–6.

  9. Chokroverty, S. Sleep disorders medicine: basic science, technical considerations, and clinical aspects. Boston: Butterworth-Heinemann; 2013.

    Google Scholar 

  10. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Google Scholar 

  11. Dickinson DL, Cazier J, Cech T. A practical validation study of a commercial accelerometer using good and poor sleepers. Health Psychol Open 2016;3(2):2055102916679012.

    Google Scholar 

  12. Freund Y, Schapire RE. A desicion-theoretic generalization of on-line learning and an application to boosting. In: European conference on computational learning theory. New York: Springer; 1995. p. 23–37.

  13. Fukui K, Akasaki S, Sato K, Mizusaki J, Moriyama K, Kurihara S, Numao M. Visualization of damage progress in solid oxide fuel cells. J Environ Eng. 2011;6(3):499–511.

    Article  Google Scholar 

  14. Fukumura H, Okada S, Makikawa M. Estimation of sleep stage using SVM from noncontact measurement of forehead and nasal skin temperature. BME. 2012;50(1):131–7. doi:10.11239/jsmbe.50.131.

    Google Scholar 

  15. Gu W, Yang Z, Shangguan L, Sun W, Jin K, Liu Y. Intelligent sleep stage mining service with smartphones. In: Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing. New York: ACM; 2014. p. 649–60.

  16. Hao T, Xing G, Zhou G. isleep: unobtrusive sleep quality monitoring using smartphones. In: Proceedings of the 11th ACM conference on embedded networked sensor systems (SenSys ’13). New York: ACM; 2013. p. 4:1–4:14. doi:10.1145/2517351.2517359.

  17. Haykin S, Chen Z. The cocktail party problem. Neural Comput. 2005;17(9):1875–902.

    Article  PubMed  Google Scholar 

  18. Hoch CC, Reynolds CF, Kupfer DJ, Berman SR, Houck PR, Stack JA. Empirical note: self-report versus recorded sleep in healthy seniors. Psychophysiology. 1987;24(3):293–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kato T, Masuda Y, Yoshida A, Morimoto T. Masseter emg activity during sleep and sleep bruxism. Arch Ital Biol. 2011;149(4):478–91.

    CAS  PubMed  Google Scholar 

  20. Kleinberg J. Bursty and hierarchical structure in streams. Data Min Knowl Discov. 2003;7(4):373–97.

    Article  Google Scholar 

  21. Kohonen T. The self-organizing map. Neurocomputing. 1998;21(1):1–6.

    Article  Google Scholar 

  22. Kohonen T. Essentials of the self-organizing map. Neural Netw. 2013;37:52–65.

    Article  PubMed  Google Scholar 

  23. Kohonen T, Kaski S, Lagus K, Salojärvi J, Honkela J, Paatero V, Saarela A. Self organization of a massive document collection. IEEE Trans Neural Netw. 2000;11(3):574–85.

    Article  CAS  PubMed  Google Scholar 

  24. Lavigne G, Rompre P, Montplaisir J. Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J Dent Res. 1996;75(1):546–52.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Najmi A, Gray RM. Image classification by a two-dimensional hidden Markov model. IEEE Trans Signal Process. 2000;48(2):517–33. doi:10.1109/78.823977.

    Article  Google Scholar 

  26. Mantua J, Gravel N, Spencer R. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors. 2016;16(5):646.

    Article  PubMed Central  Google Scholar 

  27. Metsis V, Kosmopoulos D, Athitsos V, Makedon F. Non-invasive analysis of sleep patterns via multimodal sensor input. Pers Ubiquitous Comput. 2014;18(1):19–26.

    Article  Google Scholar 

  28. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73.

    Article  PubMed  Google Scholar 

  29. Noh T, Serizawa Y, Kimura T, Yamazaki K, Hayasaka Y, Itoh T, Izumi S, Sasaki T. The assessment of sleep stage utilizing body pressure fluctuation measured by water mat sensors. J Adv Sci. 2009;21(1&2):27–30.

    Article  Google Scholar 

  30. Parmeggiani PL. Systemic homeostasis and poikilostasis in sleep: Is REM sleep a physiological paradox? Singapore: World Scientific; 2011.

    Google Scholar 

  31. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989;77(2):257–86.

    Article  Google Scholar 

  32. Riedel B, Lichstein K. Objective sleep measures and subjective sleep satisfaction: how do older adults with insomnia define a good night’s sleep? Psychol Aging. 1998;13(1):159–63. doi:10.1037//0882-7974.13.1.159.

    Article  CAS  PubMed  Google Scholar 

  33. Rokach L, Maimon O. Clustering methods. In: Data mining and knowledge discovery handbook. Heidelberg: Springer; 2005. p. 321–352.

  34. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

    Article  Google Scholar 

  35. Russo K, Goparaju B, Bianchi MT. Consumer sleep monitors: is there a baby in the bathwater? Nat Sci Sleep. 2015;7:147–57.

    PubMed  PubMed Central  Google Scholar 

  36. Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, et al. The visual scoring of sleep in adults. J Clin Sleep Med. 2007;3(2):121–31.

    PubMed  Google Scholar 

  37. Simula O, Kangas J. Process monitoring and visualization using self-organizing maps. Neural Netw Chem Eng. 1995;6:371–84.

    CAS  Google Scholar 

  38. Sonnhammer EL, Von Heijne G, Krogh A, et al. A hidden Markov model for predicting transmembrane helices in protein sequences. ISMB. 1998;6:175–82.

    CAS  PubMed  Google Scholar 

  39. Tanaka H, Shirakawa S. Sleep health, lifestyle and mental health in the japanese elderly: ensuring sleep to promote a healthy brain and mind. J Psychosom Res. 2004;56(5):465–77.

    Article  PubMed  Google Scholar 

  40. Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Trans Neural Netw. 2000;11(3):586–600.

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Kato T, Yamada T, Numao M, Fukui K. Personal sleep pattern visualization via clustering on sound data. In: Proceedings of AAAI workshops at the 31st AAAI conference on artificial intelligence; 2017. p. 592–9.

Download references

Acknowledgements

This research is partially supported by the Center of Innovation Program from Japan Science and Technology Agency, JST, the Grant-in-Aid for Scientific Research (B)(#25293393) from the JSPS, and Challenge to Intractable Oral Diseases from Osaka University Graduate School of Dentistry.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongle Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Kato, T., Numao, M. et al. Statistical sleep pattern modelling for sleep quality assessment based on sound events. Health Inf Sci Syst 5, 11 (2017). https://doi.org/10.1007/s13755-017-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13755-017-0031-z

Keywords

Navigation