Skip to main content

Advertisement

Log in

A new effective nano-adsorbent and antibacterial material of hydroxyapatite

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, nano-particles of potassium-substituted hydroxyapatite with formula of (Ca2.94K2.06)(PO4)0.94(CO3)2.06(OH) (KHA) are reported showing effective adsorption of Congo red dye in the room temperature. Synthesized sol–gel-derived KHA was identified by XRD, FTIR, TGA/DTA, and EDXA analyses. Moreover, the size of nano-particles and micro-strain of the synthesized KHA were measured using Williamson–Hall (W–H) plots and TEM in amount of 65–70 nm. The capacity of equilibrium adsorption (qm) for 100 ppm of Congo red was evaluated as high as 505.19 mg g−1 under optimum conditions. The adsorption charts and kinetic results obtained at ambient conditions well fitted with the Langmuir equation and the pseudo–first–order model with correlation coefficients of 0.9939 and 0.9867, respectively. The obtained results obviously show that the new synthesized KHA can be used for industrial wastewater purification in a good manner. The title nano-material also shows excellent antibacterial activity as highly prevention of bacteria strain growth with the lowest concentration of 125 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.L. Lian, L.P. Guo, C.J. Guo, Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J. Hazard. Mater. 161, 126–131 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. M.S. Sajab, C.H. Chia, S. Zakaria, S.M. Jani, M.K. Ayob, K.L. Chee, P.S. Khiew, W.S. Chiu, Biores. Technol. 102, 7237 (2011)

    Article  CAS  Google Scholar 

  3. B. Saha, S. Das, J. Saikia, G. Das, J. Phys. Chem. C 115, 8024–8033 (2011)

    Article  CAS  Google Scholar 

  4. N. Zaitseva, V. Zaitsev, A. Walcarius, Chromium (VI) removal via reductionesorption on bi-functional silica adsorbents. J. Hazard. Mater. 250, 454–461 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. R. Ahmad, R. Kumar, Appl. Surf. Sci. 257, 1628 (2010)

    Article  CAS  Google Scholar 

  6. C.T. Benatti, C.R.G. Tavares, E. Lenzi, Sulfate removal from waste chemicals by precipitation, J. Environ. Manage. 90, 504–511 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. K.P. Gopinath, S. Murugesan, J. Abraham, K. Muthukumar, Bioresour. Technol 100, 6295 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. A.A. Pel_aez-Cida, I. Vel_azquez-Ugaldeb, A.M. Herrera-Gonz_alezc, J. García- Serranoc, Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization. J. Environ. Manag. 130, 90–97 (2013)

    Article  CAS  Google Scholar 

  9. S. Saber-Samandari, S. Saber-Samandari, M. Gazi, Cellulose-graft-polyacrylamide/ hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions. React. Funct. Polym. 73, 1523–1530 (2013)

    Article  CAS  Google Scholar 

  10. F. Zhang, B. Ma, X. Jiang, Y. Ji, Powder Technol. 302, 207–214 (2016)

    Article  CAS  Google Scholar 

  11. M. Mohandes, M.H. Salavati-Niasari, Z. Fathi, Fereshteh, Mater. Sci. Eng.: C 45, 29–36 (2014)

    Article  CAS  Google Scholar 

  12. F. Mohandes, M. Salavati-Niasari, Chem. Eng. J. 252, 173–184 (2014)

    Article  CAS  Google Scholar 

  13. F. Mohandes, M. Salavati Niasari, ‏Mater. Sci. Eng.: C 40, 288–298 (2014)

    Article  CAS  Google Scholar 

  14. K. Diouri, A. Kherbeche, A. Chaqroune, Int. J. Innovative Res. Sci., Eng. Technol. 4, 267–274 (2015)

    Google Scholar 

  15. W. Wen, J.M. Wu, Eruption, ACS Appl. Mater. Interfaces. 3, 4112–4119 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. C. Xia, Y. Jing, Y. Jia, D. Yue, J. Ma, X. Yin, Desalination 265, 81 (2011)

    Article  CAS  Google Scholar 

  17. L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Chem. Eng. J. 181, 72–79 (2012)

    Article  CAS  Google Scholar 

  18. M. Bhaumik, R. McCrindle, A. Maity, Chem. Eng. J. 228, 506 (2013)

    Article  CAS  Google Scholar 

  19. H. Hou, R. Zhou, P. Wu, L. Wu, Chem. Eng. J. 336, 211–212 (2012)

    Google Scholar 

  20. M.I. Kay, R.A. Young, Nature 204, 1050 (1964)

    Article  CAS  PubMed  Google Scholar 

  21. A. Amiri, M. Chahkandi, A. Targhoo, Analytica Chimica Acta 950, 64–70 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. K.G. Scheckel, G.L. Diamond, M.F. Burgess, J.M. Klotzbach, M. Maddaloni, B.W. Miller, C.R. Partridge, S.M. Serda, J. Toxicol. Environ. Health B Crit. Rev. 16, 337 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. K.L. Lin, J.Y. Pan, Y.W. Chen, R.M. Cheng, X.C. Xu, J. Hazard. Mater. 161, 231 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. M. Chahkandi, A.A. Amiri, S.R. Saadatdar Arami. Microchem. J. 144, 261–269 (2019)

    Article  CAS  Google Scholar 

  25. M. Zargazi, M.H. Entezari, Appl. Catal. B: Environ. 242 (2019) 507–517

    Article  CAS  Google Scholar 

  26. M. Zargazi, M.H. Entezari, Ultrason. Sonochem. 51, 1–11 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. M. Zargazi, M.H. Entezari, J. Photochem. Photobiol. A: Chem. 365 (2018) 185–198

    Article  CAS  Google Scholar 

  28. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Ultrasonics Sonochem. 42 (2018) 171–182

    Article  CAS  Google Scholar 

  29. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, J. of Mole. Liq. 231, 306–313 (2017)

    Article  CAS  Google Scholar 

  30. M. Safari-Amiri, S. Mortazavi-Derazkola, M. Salavati-Niasari, S.M. Ghoreishi 28, 6467–6474 (2017)

    CAS  Google Scholar 

  31. Y. Tang, H.F. Chappell, M.T. Dove, R.J. Reeder, Y.J. Lee, Zinc incorporation into hydroxylapatite. J. Biomater. 30, 2864–2872 (2009)

    Article  CAS  Google Scholar 

  32. G. Liu, J. Talley, C. Na, S. Larson, L. Wolfe, Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters. Environ. Sci. Technol. 44, 1366–1372 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. C. Srilakshmi, R. Saraf, Microporous Mesoporous Mater. 219, 134–144 (2016)

    Article  CAS  Google Scholar 

  34. C. Wei, H. Zhiliang, L. Yu, H. Qianjum, Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catal. Commun. 9, 516–521 (2008)

    Article  CAS  Google Scholar 

  35. E.S. Bogya, R. Barabas, A. Savdari, V. Dejeu, I. Baldea, Hydroxyapatite modified with silica used for sorption of copper (II). Chem. Pap. 63, 568–573 (2009)

    Article  CAS  Google Scholar 

  36. C.H. Suelter, Enzymes activated by monovalent cations. Science 168, 789–795 (1970)

    Article  CAS  PubMed  Google Scholar 

  37. H.J. Hohling, H. Mishima, Y. Kozawa, T. Daimon, R.H. Barckhaus, K.D. Richter, Microprobe analyses of the potassiumcalcium distribution relationship in predentin, Scanning Microsc. Int. 5, 247–253 (1991)

    CAS  Google Scholar 

  38. S. Kannan, J.M.G. Ventura, J.M.F. Ferreira, Ceram. Int. 33, 1489–1494 (2007)

    Article  CAS  Google Scholar 

  39. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  40. A. Knauth, Chem. Mater. 17, 2378–2385 (2005), F. Boulch

    Article  CAS  Google Scholar 

  41. W. Mahdavi, L.B. Yaacob, I. Din, Nazlina, Antimicrobial activity of consecutive extracts of Etlingera brevilabrum. Sains Malaysiana 41, 1233–1237 (2012)

    Google Scholar 

  42. M. Baghayeri, B. Mahdavi, Z. Hosseinpor-Mohsen, S.Farhadi Abadi, Green synthesis of silver nano-particles using water extract of Salvia leriifolia: antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem. 32, 4057 (2018)

    Article  CAS  Google Scholar 

  43. H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, Mater. Chem. Phys. 106, 310–316 (2007)

    Article  CAS  Google Scholar 

  44. M. Chahkandi, Mater. Chem. Phys. 202, 340–351 (2017)

    Article  CAS  Google Scholar 

  45. K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, J.M.F. Ferreira, Mater. Chem. Phys. 78, 767–771 (2003)

    Article  CAS  Google Scholar 

  46. W. Cheng, G. Weng, P. Han, G. Du, J. Shen, J.M.F. Yang, Ferreira, Mater. Res. Bull. 38, 89–97 (2003)

    Article  CAS  Google Scholar 

  47. H.El Feki, T. Naddari, J.M. Savariault, A. Ben Salah, Localization of potassium in substituted lead hydroxyapatite: Pb9.30K0.60(PO4)6(OH)1.20 by X-ray diffraction. Solid State Sci. 2, 725–733 (2000)

    Article  Google Scholar 

  48. E.G. Nordstrom, K.H. Karlsson, Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions. Biomed. Mater. Eng. 2, 185–189 (1992)

    CAS  PubMed  Google Scholar 

  49. H.El Feki, A. Ben Salah, A. Daoud, A. Lamure, C. Lacabanne, Studies by thermally stimulated current (TSC) of hydroxyl and fluoro-carbonated apatites containing sodium ions. J. Phys. Condens. Matter 12, 8331–8343 (2000)

    Article  CAS  Google Scholar 

  50. L. Cui, Y. Wang, L. Hu, L. Gao, B. Du, Q. Wei, RSC Adv. 5, 9759–9770 (2015)

    Article  CAS  Google Scholar 

  51. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Langmuir. 21, 1931–1936 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. A. Harding, N. Rashid, K.A. Hing, Biomaterials, 26 (2005) 6818

    Article  CAS  PubMed  Google Scholar 

  53. L. Guangci, S. Yuanyuan, L. Xuebing, L. Yunqi, RSC Adv. 6, 11855–11862 (2016)

    Article  CAS  Google Scholar 

  54. G. Bharath, A. Jagadeesh Kumar, K. Karthick, D. Mangalaraj, C. Viswanathan, N. Ponpandian, RSC Adv. 4, 37446–37457 (2014)

    Article  CAS  Google Scholar 

  55. C. Ng, J.N. Losso, W.E. Marshall, R.M. Rao, Bioresour. Technol. 85, 131–135 (2002)

    Article  CAS  PubMed  Google Scholar 

  56. B. Serap Cetınkaya, Akkaya, Mater. Sci. Eng.: C 68, 573–578 (2016)

    Article  CAS  Google Scholar 

  57. H.M.F. Freundlich, Z. Phys. Chem. 57, 385 (1906)

    CAS  Google Scholar 

  58. M.I. Tempkin, V. Pyzhev, Acta Phys. Chim. USSR 12, 327–356 (1940)

    Google Scholar 

  59. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Ind. Eng. Chem. Fundam. 5, 212 (1966)

    Article  CAS  Google Scholar 

  60. L. Lian, L. Guo, C. Guo, J. Hazard. Mater. 161, 126–131 (2009)

    Article  CAS  PubMed  Google Scholar 

  61. S. Zeng, S. Duan, R. Tang, L. Li, C. Liu, D. Sun, Chem. Eng. J. 258, 218–228 (2014)

    Article  CAS  Google Scholar 

  62. H.Y. Zhu, Y.Q. Fu, R. Jiang, J. Yao, L. Liu, Y.W. Chen, L. Xiao, G.M. Zeng, Appl. Surf. Sci. 285 B (2013) 865–873

  63. X.R. Zhao, W. Wang, Y.J. Zhang, S.Z. Wu, F. Li, J.P. Liu, Chem. Eng. J. 250, 164 174 (2014)

    Google Scholar 

  64. R. Kumar, J. Rashida, M.A. Barakat, RSC Adv. 4, 38334–38340 (2014)

    Article  CAS  Google Scholar 

  65. E. Kolanthai, K. Ganesan, M. Epple, S.N. Kalkura, Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Mater. Today Commun. 8, 31–40 (2016)

    Article  CAS  Google Scholar 

  66. S. Mortazavi-Derazkola, M. Salavati-Niasari, H. Khojasteh, O. Amiri, S.M. Ghoreishi, Green synthesis of magnetic Fe3O4/SiO2/HAp nanocomposite for atenolol delivery and in vivo toxicity study. J. Clean. Prod. 168, 39–50 (2017)

    Article  CAS  Google Scholar 

  67. F. Mohandes, M. Salavati-Niasari, Journal of nanoparticle research 16 (2014) 2604&#8207

  68. F. Mohandes, M. Salavati-Niasari, RSC Adv. 4, 25993–26001 (2014)

    Article  CAS  Google Scholar 

  69. J.T. Ratnayake, M. Mucalo, G.J. Dias, Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. Part B: Appl. Biomater. 105, 1285–1299 (2017)

    Article  CAS  Google Scholar 

  70. B. Tian, W. Chen, Y. Dong, J.V. Marymont, Y. Lei, Q. Ke, Y. Guo, Z. Zhu, Silver nanoparticle-loaded hydroxyapatite coating: structure, antibacterial properties, and capacity for osteogenic induction in vitro. RSC Adv. 6, 8549–8562 (2016)

    Article  CAS  Google Scholar 

  71. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanism, molecular targets and applications. Nat. Rev. Microbiol. 11(6), 371 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. A. Rajendran, R.C. Barik, D. Natarajan, M. Kiran, D.K. Pattanayak, Synthesis, phase stability of hyd roxyapatite–silver composite with antimicrobial activity and cytocompatability. Ceram. Int. 40(7), 10831–10838 (2014)

    Article  CAS  Google Scholar 

  73. D. Sun, M. Babar Shahzad, M. Li, G. Wang, D. Xu, Antimicrobial materials with medical applications. Mater. Technol. 30, B90–B95 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MCH gratefully acknowledges the financial support by the Hakim Sabzevari University. M.M. gratefully acknowledges the financial support by the Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Chahkandi or Masoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahkandi, M., Arami, S.R.S., Mirzaei, M. et al. A new effective nano-adsorbent and antibacterial material of hydroxyapatite. J IRAN CHEM SOC 16, 695–705 (2019). https://doi.org/10.1007/s13738-018-1546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1546-1

Keywords

Navigation