Skip to main content
Log in

A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A composite based on coffee grounds waste (CGW) coated with the semi-conducting polypyrrole (PPy) was prepared by pyrrole polymerization using potassium persulfate as oxidant. The composite was characterized by FTIR spectroscopy, cyclic voltammetry, UV/vis spectroscopy, scanning electron microscopy (SEM) and TGA analysis. SEM analysis showed homogeneous coating of coffee fibers with spherical nanoparticles of PPy with diameters in the range of 200–300 nm. Aqueous adsorption experiments of rhodamine B dye (RhB) onto the as-prepared composite were performed. The effect of pH and initial dye concentration (C0) on the adsorption behavior was studied. The results showed that this material was an efficient adsorbent of RhB dye at alkaline pH. The adsorption experiments were set at C0 = 200 mg/L and initial pH values of 2.0, 3.25 and 9.0, the adsorption capacities were 7.22, 13.8, and 19.0 mg of dye/g of the composite, respectively. Nonetheless, when pH was maintained at 9.0 throughout adsorption time, the adsorption capacity increased to 32 mg of dye/g of the composite. When performing adsorption tests using pure CGW, dye adsorption was insignificant at any pH level. Adsorption isotherm for RhB at controlled pH of 9.0 was well described by the Redlich–Peterson model and by the typical Langmuir adsorption model with a theoretical maximum adsorption capacity (qmax) of 50.59 mg of dye/g of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Noorhosseini A, Allahyari MS, Damalas CA, Moghaddam SS (2017) Public environmental awareness of water pollution from urban growth: the case of Zarjub and Goharrud rivers in Rasht, Iran. Sci Total Environ 599–600:2019–2025

    Article  Google Scholar 

  2. WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report (2017) Wastewater: the untapped resource. UNESCO, Paris

    Google Scholar 

  3. Drumond Chequer FM, Rodrigues de Oliveira GA, Anastácio Ferraz ER, Carvalho Cardoso J, Boldrin Zanoni MV, Palma de Oliveira D (2013) Textile Dyes: Dyeing Process and Environmental Impact. In: Gunay M (ed) Eco-Friendly Textile Dyeing and Finishing. InTech, Rijeka, pp 151–176

    Google Scholar 

  4. Purkait MK, Maiti A, DasGupta S, De S (2007) Removal of congo red using activated carbon and its regeneration. J Hazard Mater 145:287–295

    Article  CAS  Google Scholar 

  5. Garg VK, Gupta R, Yadav AB, Kumar R (2003) Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol 89:121–124

    Article  CAS  Google Scholar 

  6. Li Y, Chen W (2011) Photocatalytic degradation of rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal Sci Technol 1:802–809

    Article  Google Scholar 

  7. Shen K, Gondal MA (2017) Removal of hazardous rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21:S120–S127

    Article  CAS  Google Scholar 

  8. Bardajee GR, Azimi S, Sharifi MBAS (2016) Ultrasonically accelerated synthesis of silver nanocomposite hydrogel based on salep biopolymer: application in rhodamine dye adsorption. Iran Polym J 25:1047–1063

    Article  CAS  Google Scholar 

  9. Hayeeye F, Sattar M, Chinpa W, Sirichote O (2017) Kinetics and thermodynamics of rhodamine B adsorption by gelatin/activated carbon composite beads. Colloid Surf A Physicochem Eng Aspects 513:259–266

    Article  CAS  Google Scholar 

  10. Shen J, Wu Y, Zhang B, Li F (2015) Adsorption of rhodamine B dye by biomimetic mesoporous SiO2 nanosheets. Clean Technol Environ Policy 17:2289–2298

    Article  CAS  Google Scholar 

  11. Baek MH, Ijagbemi CO, Se-Jin O, Kim DS (2010) Removal of malachite green from aqueous solution using degreased coffee bean. J Hazard Mater 176:820–828

    Article  CAS  Google Scholar 

  12. Hirata M, Kawasaki N, Nakamura T, Matsumoto K, Kabayama M, Tamura T, Tanada S (2002) Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.. J Colloid Interface Sci 254:17–22

    Article  CAS  Google Scholar 

  13. Safarik I, Horska K, Svobodova B, Safarikova M (2012) Magnetically modified spent coffee grounds for dyes removal. Eur Food Res Technol 234:345–350

    Article  CAS  Google Scholar 

  14. Nabid MR, Sedghi R, Sharifi R, Oskooie HA, Heravi MM (2013) Removal of toxic nitrate ions from drinking water using conducting polymer/MWCNTs nanocomposites. Iran Polym J 22:85–92

    Article  CAS  Google Scholar 

  15. Banimahd-Keivani M, Zare K, Aghaie H, Ansari R (2009) Removal of methylene blue dye by application of polyaniline nanocomposite from aqueous solutions. J Phys Theory Chem 6:50–56

    Google Scholar 

  16. Ansari R, Mosayebzadeh Z (2010) Removal of basic dye methylene blue from aqueous solutions using sawdust and sawdust coated with polypyrrole. J Iran Chem Soc 20107:339–350

    Article  Google Scholar 

  17. Ovando-Medina VM, Díaz-Flores PE, Martínez-Gutiérrez H, Moreno-Ruiz LA, Antonio-Carmona ID, Hernández-Ordoñez M (2014) Composite of cellulosic agricultural waste coated with semi-conducting polypyrrole as potential dye remover. Polym Compos 35:186–193

    Article  CAS  Google Scholar 

  18. Ovando-Medina VM, Vizcaíno-Mercado J, González-Ortega O, Rodríguez de la Garza JA, Martínez-Gutiérrez H (2015) Synthesis of α-cellulose/polypyrrole composite for the removal of reactive red dye from aqueous solution: kinetics and equilibrium modeling. Polym Compos 36:312–321

    Article  CAS  Google Scholar 

  19. Lavecchia R, Medici F, Patterer MS, Zuorro A (2016) Lead removal from water by adsorption on spent coffee grounds. Chem Eng Trans 47:295–300

    Google Scholar 

  20. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA (2011) Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep Purif Technol 83:173–179

    Article  Google Scholar 

  21. Johnston JH, Moraes J, Borrmann T (2005) Conducting polymers on paper fibres. Synth Met 153:65–68

    Article  CAS  Google Scholar 

  22. Pujol D, Liu C, Gominho J, Olivella JA, Fiol N, Villaescusa I, Pereira H (2013) The chemical composition of exhausted coffee waste. Ind Crops Prod 50:423–429

    Article  CAS  Google Scholar 

  23. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  24. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  25. Johnston JH, Kelly FM, Moraes J, Borrmann T, Flynn D (2006) Conducting polymer composites with cellulose and protein fibres. Curr Appl Phys 6:587–590

    Article  Google Scholar 

  26. Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  Google Scholar 

  27. Wondraczek H, Kotiaho A, Fardim P, Heinze T (2011) Photoactive polysaccharides. Carbohydr Polym 83:1048–1061

    Article  CAS  Google Scholar 

  28. Arjomandi J, Holze R (2013) A spectroelectrochemical study of conducting pyrrole-N-methylpyrrole copolymers in nonaqueous solution. J Solid State Electrochem 17:1881–1889

    Article  CAS  Google Scholar 

  29. Ovando-Medina VM, Peralta RD, Mendizábal E, Martínez-Gutiérrez H, Lara-Ceniceros TE, Ledezma-Rodríguez R (2011) Synthesis of polypyrrole nanoparticles by oil-in-water microemulsion polymerization with narrow size distribution. Colloid Polym Sci 289:759–765

    Article  CAS  Google Scholar 

  30. Omastová M, Trchová M, Kovárová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455

    Article  Google Scholar 

  31. Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7:3493–3503

    Article  CAS  Google Scholar 

  32. Jakab E, Mészáros E, Omastová M (2007) Thermal decomposition of polypyrroles. J Therm Anal Calorim 88:515–521

    Article  CAS  Google Scholar 

  33. Qi L, Tang X, Wang Z, Peng X (2017) Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int J Mining Sci Technol 27:371–377

    Article  CAS  Google Scholar 

  34. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  35. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782

    Article  CAS  Google Scholar 

  36. Franca AS, Oliveira LS, Ferreira ME (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267–272

    Article  CAS  Google Scholar 

  37. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  Google Scholar 

  38. González-Iñiguez JC, Ovando-Medina VM, Jasso-Gastinel CF, González DA, Puig JE, Mendizábal E (2014) Synthesis of polypyrrole nanoparticles by batch and semicontinuous heterophase polymerizations. Colloid Polym Sci 292:1269–1275

    Article  Google Scholar 

  39. Salleh MAM, Mahmoud DK, Karim WAW, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    Article  CAS  Google Scholar 

  40. Thompson G, Swain J, Kay M, Forster CF (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286

    Article  CAS  Google Scholar 

  41. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc (Resumed) 0:3973–3993

    Article  CAS  Google Scholar 

  42. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  43. Gerente C, Lee VKC, Cloirec PL, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127

    Article  CAS  Google Scholar 

  44. Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1:111–117

    Article  CAS  Google Scholar 

  45. Shenvi SS, Isloor AM, Shilton SJ, Al Ahmed A (2015) Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B. Eng Ind Chem Res 54:4965–4975

    Article  CAS  Google Scholar 

  46. Damiyine B, Guenbour A, Boussen R (2017) Adsorption of rhodamine B dye onto expanded perlite from aqueous solution: kinetics, equilibrium and thermodynamics. J Mater Environ Sci 8:345–355

    Google Scholar 

  47. Shah J, Jan MR, Haq A, Khan Y (2013) Removal of rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies. Front Chem Sci Eng 7:428–436

    Article  CAS  Google Scholar 

  48. Paulraj A, Elizabeth AT (2016) Removal of rhodamine B and congo red from aqueous solutions by adsorption onto activated carbons. Chem Sci Trans 5:87–96

    CAS  Google Scholar 

  49. Selvam PP, Preethi S, Basakaralingam P, Thinakaran N, Sivasamy A, Sivanesan S (2008) Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J Hazard Mater 155:39–44

    Article  CAS  Google Scholar 

  50. Hossain MA, Alam MS (2012) Adsorption kinetics of rhodamine-B on used black tea leaves. Iran J Environ Health Sci Eng 9:2–15

    Article  Google Scholar 

  51. Li Q, Tang X, Sun Y, Wang Y, Long Y, Jiang J, Xu H (2015) Removal of rhodamine B from wastewater by modified Volvariella volvacea: batch and column study. RSC Adv 5:25337–25347

    Article  CAS  Google Scholar 

  52. Kooh MRR, Dahri MK, Lim LB (2016) The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent. Cogent Environ Sci. https://doi.org/10.1080/23311843.2016.1140553

    Google Scholar 

  53. Postai DL, Demarchi CA, Zanatta F, Melo DCC, Rodrigues CA (2016) Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alexandr Eng J 55:1713–1723

    Article  Google Scholar 

  54. Gad HMH, El-Sayed AA (2009) Activated carbon from agricultural by-products for the removal of rhodamine B from aqueous solution. J Hazard Mater 168:1070–1081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SEP-PRODEP (Mexico) through Program “Red de Investigación y Desarrollo de Nanomateriales Híbridos para Aplicaciones Ambientales Avanzadas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Ovando-Medina.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovando-Medina, V.M., Dávila-Guzmán, N.E., Pérez-Aguilar, N.V. et al. A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption. Iran Polym J 27, 171–181 (2018). https://doi.org/10.1007/s13726-018-0598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0598-5

Keywords

Navigation