Skip to main content

Advertisement

Log in

Immunology of HPV Infection

  • Management of HPV and Associated Cervical Lesions (L Denny, Section Editor)
  • Published:
Current Obstetrics and Gynecology Reports Aims and scope Submit manuscript

Abstract

Human papillomavirus (HPV) infection in the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. However, most of those who develop benign lesions eventually mount an effective cell-mediated immune response and the lesions regress. Regression of anogenital warts is accompanied histologically by a CD4+ T cell-dominated Th1 response, and animal models support this and provide evidence that the response is modulated by antigen-specific CD4+ T cell-dependent mechanisms. Failure to develop effective CMI to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to high-grade intraepithelial neoplasia and invasive carcinoma. Effective evasion of innate immune recognition and activation of adaptive immune responses seem to be the hallmark of HPV infections. The viral infectious cycle is exclusively intraepithelial, there is no viraemia, no virus-induced cytolysis or cell death and viral replication, and release is not associated with inflammation. HPV globally downregulates the innate immune signalling pathways in the infected keratinocyte, pro-inflammatory cytokines particularly the type I interferons are not released, and the signals for Langerhans cell (LC) activation and migration together with recruitment of stromal dendritic cells and macrophages are either not present or inadequate. This immune ignorance results in chronic infections that persist over weeks and months. Progression to high-grade intraepithelial neoplasia with the concomitant upregulation of the E6 and E7 oncoproteins is associated with further deregulation of immunologically relevant molecules, particularly chemotactic chemokines and their receptors, on keratinocytes and endothelial cells of the underlying microvasculature limiting or preventing the ingress of cytotoxic effectors into the lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30 Suppl 5:F12–23.

    Article  PubMed  Google Scholar 

  2. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  3. Ball SL, Winder DM, Vaughan K, Hanna N, Levy J, Sterling JC, et al. Analyses of human papillomavirus genotypes and viral loads in anogenital warts. J Med Virol. 2011;83(8):1345–50.

    Article  CAS  PubMed  Google Scholar 

  4. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30 Suppl 5:F55–70.

    Article  CAS  PubMed  Google Scholar 

  5. Garland SM, Steben M, Sings HL, James M, Lu S, Railkar R, et al. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J Infect Dis. 2009;199(6):805–14.

    Article  PubMed  Google Scholar 

  6. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289–301.

    Article  CAS  PubMed  Google Scholar 

  7. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25(2):215–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819–26.

    Article  CAS  PubMed  Google Scholar 

  10. Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediat Inflamm. 2010;2010:976024.

    Article  Google Scholar 

  11. Loo YM, Gale Jr M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34(5):680–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Taylor KE, Mossman KL. Recent advances in understanding viral evasion of type I interferon. Immunology. 2013;138(3):190–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Black AP, Ardern-Jones MR, Kasprowicz V, Bowness P, Jones L, Bailey AS, et al. Human keratinocyte induction of rapid effector function in antigen-specific memory CD4+ and CD8+ T cells. Eur J Immunol. 2007;37(6):1485–93.

    Article  CAS  PubMed  Google Scholar 

  14. Karim R, Meyers C, Backendorf C, Ludigs K, Offringa R, van Ommen GJ, et al. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One. 2011;6(3):e17848. The first description using virus-infected keratinocytes to show a global downregulation of keratinocyte-generated antiviral and pro-inflammatory cytokines.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol. 2013;13(1):46–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol. 2001;75(9):4283–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Karstensen B, Poppelreuther S, Bonin M, Walter M, Iftner T, Stubenrauch F. Gene expression profiles reveal an upregulation of E2F and downregulation of interferon targets by HPV18 but no changes between keratinocytes with integrated or episomal viral genomes. Virology. 2006;353(1):200–9.

    Article  CAS  PubMed  Google Scholar 

  18. Chang YE, Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol. 2000;74(9):4174–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tummers B, Burg SH. High-risk human papillomavirus targets crossroads in immune signaling. Virus. 2015;7(5):2485–506.

    Article  CAS  Google Scholar 

  20. Coiera E, Moerman-Herzog A, Nakagawa M. Early defensive mechanisms against human papillomavirus infection. J Med Internet Res. 2015;22:850–7.

    Google Scholar 

  21. Reiser J, Hurst J, Voges M, Krauss P, Munch P, Iftner T, et al. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol. 2011;85(21):11372–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sunthamala N, Thierry F, Teissier S, Pientong C, Kongyingyoes B, Tangsiriwatthana T, et al. E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-kappa transcription in keratinocytes. PLoS One. 2014;9(3):e91473.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, et al. Human papillomavirus type 16 E5 protein induces interferon-beta expression through interferon regulatory factor-1 in human keratinocytes. J Virol. 2011;85(10):5070–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, et al. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLoS Pathog. 2013;9(5):e1003384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tummers B, Goedemans R, Pelascini LP, Jordanova ES, van Esch EM, Meyers C, et al. The interferon-related developmental regulator 1 is used by human papillomavirus to suppress NFkappaB activation. Nat Commun. 2015;6:6537.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol. 2002;169(6):3242–9.

    Article  CAS  PubMed  Google Scholar 

  27. Da Silva DM, Fausch SC, Verbeek JS, Kast WM. Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcgamma receptors and contributes to acquisition of T cell immunity. J Immunol. 2007;178(12):7587–97.

    Article  PubMed  Google Scholar 

  28. Devoti J, Hatam L, Lucs A, Afzal A, Abramson A, Steinberg B, et al. Decreased Langerhans cell responses to IL-36gamma: altered innate immunity in patients with recurrent respiratory papillomatosis. Mol Med. 2014;20(1):372–80.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Matthews K, Leong CM, Baxter L, Inglis E, Yun K, Backstrom BT, et al. Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J Virol. 2003;77(15):8378–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Leong CM, Doorbar J, Nindl I, Yoon HS, Hibma MH. Deregulation of E-cadherin by human papillomavirus is not confined to high-risk, cancer-causing types. Br J Dermatol. 2010;163(6):1253–63.

    Article  PubMed  Google Scholar 

  31. van Seters M, Beckmann I, Heijmans-Antonissen C, van Beurden M, Ewing PC, Zijlstra FJ, et al. Disturbed patterns of immunocompetent cells in usual-type vulvar intraepithelial neoplasia. Cancer Res. 2008;68(16):6617–22.

    Article  PubMed  Google Scholar 

  32. Guess JC, McCance DJ. Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3alpha production. J Virol. 2005;79(23):14852–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nakayama Y, Asagoe K, Yamauchi A, Yamamoto T, Shirafuji Y, Morizane S, et al. Dendritic cell subsets and immunological milieu in inflammatory human papilloma virus-related skin lesions. J Dermatol Sci. 2011;63(3):173–83.

    Article  CAS  PubMed  Google Scholar 

  34. Moscicki AB, Schiffman M, Burchell A, Albero G, Giuliano AR, Goodman MT, et al. Updating the natural history of human papillomavirus and anogenital cancers. Vaccine. 2012;30 Suppl 5:F24–33.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nicholls PK, Moore PF, Anderson DM, Moore RA, Parry NR, Gough GW, et al. Regression of canine oral papillomas is associated with infiltration of CD4+ and CD8+ lymphocytes. Virology. 2001;283(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  36. Coleman N, Birley HD, Renton AM, Hanna NF, Ryait BK, Byrne M, et al. Immunological events in regressing genital warts. Am J Clin Pathol. 1994;102(6):768–74.

    CAS  PubMed  Google Scholar 

  37. de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002;62(2):472–9.

    PubMed  Google Scholar 

  38. Woo YL, van den Hende M, Sterling JC, Coleman N, Crawford RA, Kwappenberg KM, et al. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int J Cancer. 2010;126(1):133–41.

    Article  CAS  PubMed  Google Scholar 

  39. Jain S, Moore RA, Anderson DM, Gough GW, Stanley MA. Cell-mediated immune responses to COPV early proteins. Virology. 2006;356(1-2):23–34.

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie J, King A, Hare J, Fulford T, Wilson B, Stanley M. Immunocytochemical characterization of large granular lymphocytes in normal cervix and HPV associated disease. J Pathol. 1991;165(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  41. Trimble CL, Clark RA, Thoburn C, Hanson NC, Tassello J, Frosina D, et al. Human papillomavirus 16-associated cervical intraepithelial neoplasia in humans excludes CD8 T cells from dysplastic epithelium. J Immunol. 2010;185(11):7107–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hubert P, Herman L, Roncarati P, Maillard C, Renoux V, Demoulin S, et al. Altered alpha-defensin 5 expression in cervical squamocolumnar junction: implication in the formation of a viral/tumour-permissive microenvironment. J Pathol. 2014;234(4):464–77.

    Article  CAS  PubMed  Google Scholar 

  43. Wiens ME, Smith JG. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol. 2015;89(5):2866–74.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010;118(1 Suppl):S12–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8(9):737–44.

    Article  CAS  PubMed  Google Scholar 

  46. Remoue F, Jacobs N, Miot V, Boniver J, Delvenne P. High intraepithelial expression of estrogen and progesterone receptors in the transformation zone of the uterine cervix. Am J Obstet Gynecol. 2003;189(6):1660–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294(2):63–9.

    Article  CAS  PubMed  Google Scholar 

  48. Fung KY, Mangan NE, Cumming H, Horvat JC, Mayall JR, Stifter SA, et al. Interferon-epsilon protects the female reproductive tract from viral and bacterial infection. Science. 2013;339(6123):1088–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723–33.

    Article  PubMed  Google Scholar 

  50. Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21(7):674–E1-9.

    Article  PubMed  Google Scholar 

  51. Dareng EO, Ma B, Famooto AO, Akarolo-Anthony SN, Offiong RA, Olaniyan O, et al. Prevalent high-risk HPV infection and vaginal microbiota in Nigerian women. Epidemiol Infect. 2015;11:1–15.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Margaret Stanley declares that she received personal fees for being a consultant to MSD Merck, GSK Biologicals and SPMSD.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Stanley.

Additional information

This article is part of the Topical Collection on Management of HPV and Associated Cervical Lesions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, M. Immunology of HPV Infection. Curr Obstet Gynecol Rep 4, 195–200 (2015). https://doi.org/10.1007/s13669-015-0134-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13669-015-0134-y

Keywords

Navigation