Skip to main content
Log in

Early Graft Dysfunction After Lung Transplantation

  • Lung Transplant (R Bag, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Primary graft dysfunction is an acute lung injury syndrome occurring immediately following lung transplantation. This review aims to provide an overview of the current understanding of primary graft dysfunction (PGD), including epidemiology, immunology, clinical outcomes, and management.

Recent Findings

Identification of donor and recipient factors allowing accurate prediction of PGD has been actively pursued. Improved understanding of the immunology underlying PGD has spurred interest in identifying relevant biomarkers. Work in PGD prediction, severity stratification, and targeted therapies continue to make progress. Donor expansion strategies continue to be pursued with ex vivo lung perfusion playing a prominent role. While care of PGD remains supportive, ECMO has established a prominent role in the early aggressive management of severe PGD.

Summary

A consensus definition of PGD has allowed marked advances in research and clinical care of affected patients. Future research will lead to reliable predictive tools and targeted therapeutics of this important syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Snell GI, Yusen RD, Weill D, Strueber M, Garrity E, Reed A, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction, part I: definition and grading-a 2016 Consensus Group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1097–103. https://doi.org/10.1016/j.healun.2017.07.021 Consensus definition of primary graft dysfunction, providing rationale for updated definition, detailing validity of 2005 definition, and providing operational considerations for defining PGD.

    Article  PubMed  Google Scholar 

  2. Christie JD, Van Raemdonck D, de Perrot M, Barr M, Keshavjee S, Arcasoy S, et al. Report of the ISHLT Working Group on primary lung graft dysfunction part I: introduction and methods. J Heart Lung Transplant. 2005;24(10):1451–3. https://doi.org/10.1016/j.healun.2005.03.004.

    Article  PubMed  Google Scholar 

  3. Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D, et al. Report of the ISHLT Working Group on primary lung graft dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24(10):1454–9. https://doi.org/10.1016/j.healun.2004.11.049.

    Article  PubMed  Google Scholar 

  4. Whitson BA, Prekker ME, Herrington CS, Whelan TP, Radosevich DM, Hertz MI, et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant. 2007;26(10):1004–11. https://doi.org/10.1016/j.healun.2007.07.018.

    Article  PubMed  Google Scholar 

  5. Daud SA, Yusen RD, Meyers BF, Chakinala MM, Walter MJ, Aloush AA, et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2007;175(5):507–13. https://doi.org/10.1164/rccm.200608-1079OC.

    Article  PubMed  Google Scholar 

  6. Prekker ME, Nath DS, Walker AR, Johnson AC, Hertz MI, Herrington CS, et al. Validation of the proposed International Society for Heart and Lung Transplantation grading system for primary graft dysfunction after lung transplantation. J Heart Lung Transplant. 2006;25(4):371–8. https://doi.org/10.1016/j.healun.2005.11.436.

    Article  PubMed  Google Scholar 

  7. • Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33. https://doi.org/10.1001/jama.2012.5669 This manuscript addresses and updates a number of concerns raised since adoption of the 1994 American-European Consensus Conference ARDS definition.

    Article  CAS  PubMed  Google Scholar 

  8. • Shah RJ, Diamond JM, Cantu E, Lee JC, Lederer DJ, Lama VN, et al. Latent class analysis identifies distinct phenotypes of primary graft dysfunction after lung transplantation. Chest. 2013;144(2):616–22. https://doi.org/10.1378/chest.12-1480 Multi-center analysis looking at patients with grade 3 PGD restrospectively differentiates amongst various phenotypes, suggesting differing mechanisms and outcomes for each.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Christie JD, Bellamy S, Ware LB, Lederer D, Hadjiliadis D, Lee J, et al. Construct validity of the definition of primary graft dysfunction after lung transplantation. J Heart Lung Transplant. 2010;29(11):1231–9. https://doi.org/10.1016/j.healun.2010.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Cantu E, Diamond JM, Suzuki Y, Lasky J, Schaufler C, Lim B, et al. Quantitative evidence for revising the definition of primary graft dysfunction after lung transplant. Am J Respir Crit Care Med. 2018;197(2):235–43. https://doi.org/10.1164/rccm.201706-1140OC An analysis of the validity of the 2016 updated PGD definition considers outcomes in relation to PGD grades, effect of single versus bilateral transplantation, effect of mechanical ventilation on outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diamond JM, Shah RJ, Cantu E 3rd, Porteous MK, Christie JD. Survey of lung transplant community's views on primary graft dysfunction. Am J Transplant. 2016;16(2):724–6. https://doi.org/10.1111/ajt.13552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diamond JM, Arcasoy S, Kennedy CC, Eberlein M, Singer JP, Patterson GM, et al. Report of the International Society for Heart and Lung Transplantation Working Group on primary lung graft dysfunction, part II: epidemiology, risk factors, and outcomes-a 2016 consensus group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1104–13. https://doi.org/10.1016/j.healun.2017.07.020.

    Article  PubMed  Google Scholar 

  13. Shah RJ, Diamond JM. Primary graft dysfunction (PGD) following lung transplantation. Semin Respir Crit Care Med. 2018;39(2):148–54. https://doi.org/10.1055/s-0037-1615797.

    Article  PubMed  Google Scholar 

  14. Whitson BA, Nath DS, Johnson AC, Walker AR, Prekker ME, Radosevich DM, et al. Risk factors for primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg. 2006;131(1):73–80. https://doi.org/10.1016/j.jtcvs.2005.08.039.

    Article  PubMed  Google Scholar 

  15. •• Diamond JM, Lee JC, Kawut SM, Shah RJ, Localio AR, Bellamy SL, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2013;187(5):527–34. https://doi.org/10.1164/rccm.201210-1865OC Multi-center, prospective cohort identifying risk factors for severe PGD, risk of PGD for each variable, and differential outcomes based upon transplant center.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kreisel D, Krupnick AS, Puri V, Guthrie TJ, Trulock EP, Meyers BF, et al. Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center. J Thorac Cardiovasc Surg. 2011;141(1):215–22. https://doi.org/10.1016/j.jtcvs.2010.09.009.

    Article  PubMed  Google Scholar 

  17. Meyer KC, Raghu G, Verleden GM, Corris PA, Aurora P, Wilson KC, et al. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44(6):1479–503. https://doi.org/10.1183/09031936.00107514.

    Article  PubMed  Google Scholar 

  18. Vermeulen KM, Groen H, van der Bij W, Erasmus ME, Koeter GH, TenVergert EM. The effect of bronchiolitis obliterans syndrome on health related quality of life. Clin Transpl. 2004;18(4):377–83. https://doi.org/10.1111/j.1399-0012.2004.00174.x.

    Article  Google Scholar 

  19. Christie JD, Sager JS, Kimmel SE, Ahya VN, Gaughan C, Blumenthal NP, et al. Impact of primary graft failure on outcomes following lung transplantation. Chest. 2005;127(1):161–5. https://doi.org/10.1378/chest.127.1.161.

    Article  PubMed  Google Scholar 

  20. Van Raemdonck D, Hartwig MG, Hertz MI, Davis RD, Cypel M, Hayes D Jr, et al. Report of the ISHLT working group on primary lung graft dysfunction part IV: prevention and treatment: a 2016 consensus group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1121–36. https://doi.org/10.1016/j.healun.2017.07.013.

    Article  PubMed  Google Scholar 

  21. Dark JH. What’s new in pulmonary transplantation: finding the right lung for every patient. J Thorac Cardiovasc Surg. 2016;151(2):315–6. https://doi.org/10.1016/j.jtcvs.2015.09.024.

    Article  PubMed  Google Scholar 

  22. Sommer W, Kuhn C, Tudorache I, Avsar M, Gottlieb J, Boethig D, et al. Extended criteria donor lungs and clinical outcome: results of an alternative allocation algorithm. J Heart Lung Transplant. 2013;32(11):1065–72. https://doi.org/10.1016/j.healun.2013.06.021.

    Article  PubMed  Google Scholar 

  23. Mulligan MJ, Sanchez PG, Evans CF, Wang Y, Kon ZN, Rajagopal K, et al. The use of extended criteria donors decreases one-year survival in high-risk lung recipients: a review of the united network of organ sharing database. J Thorac Cardiovasc Surg. 2016;152(3):891–8 e2. https://doi.org/10.1016/j.jtcvs.2016.03.096.

    Article  PubMed  Google Scholar 

  24. Somers J, Ruttens D, Verleden SE, Cox B, Stanzi A, Vandermeulen E, et al. A decade of extended-criteria lung donors in a single center: was it justified? Transpl Int. 2015;28(2):170–9. https://doi.org/10.1111/tri.12470.

    Article  PubMed  Google Scholar 

  25. Kotloff RM, Blosser S, Fulda GJ, Malinoski D, Ahya VN, Angel L, et al. Management of the potential organ donor in the ICU: Society of Critical Care Medicine/American College of Chest Physicians/Association of Organ Procurement Organizations Consensus Statement. Crit Care Med. 2015;43(6):1291–325. https://doi.org/10.1097/CCM.0000000000000958.

    Article  PubMed  Google Scholar 

  26. Mascia L, Pasero D, Slutsky AS, Arguis MJ, Berardino M, Grasso S, et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA. 2010;304(23):2620–7. https://doi.org/10.1001/jama.2010.1796.

    Article  CAS  PubMed  Google Scholar 

  27. • Minambres E, Coll E, Duerto J, Suberviola B, Mons R, Cifrian JM, et al. Effect of an intensive lung donor-management protocol on lung transplantation outcomes. J Heart Lung Transplant. 2014;33(2):178–84. https://doi.org/10.1016/j.healun.2013.10.034 Details a management protocol for potential lung donors. Analyzes impact on rate of organ acceptance, recipient survival, and PGD after implementing their protocol.

    Article  PubMed  Google Scholar 

  28. Bonser RS, Taylor R, Collett D, Thomas HL, Dark JH, Neuberger J, et al. Effect of donor smoking on survival after lung transplantation: a cohort study of a prospective registry. Lancet. 2012;380(9843):747–55. https://doi.org/10.1016/S0140-6736(12)60160-3.

    Article  PubMed  Google Scholar 

  29. Shigemura N, Toyoda Y, Bhama JK, Gries CJ, Crespo M, Johnson B, et al. Donor smoking history and age in lung transplantation: a revisit. Transplantation. 2013;95(3):513–8. https://doi.org/10.1097/TP.0b013e3182751f1f.

    Article  PubMed  Google Scholar 

  30. Kuntz CL, Hadjiliadis D, Ahya VN, Kotloff RM, Pochettino A, Lewis J, et al. Risk factors for early primary graft dysfunction after lung transplantation: a registry study. Clin Transpl. 2009;23(6):819–30. https://doi.org/10.1111/j.1399-0012.2008.00951.x.

    Article  Google Scholar 

  31. Porteous MK, Lee JC. Primary graft dysfunction after lung transplantation. Clin Chest Med. 2017;38(4):641–54. https://doi.org/10.1016/j.ccm.2017.07.005.

    Article  PubMed  Google Scholar 

  32. Sabashnikov A, Patil NP, Popov AF, Soresi S, Zych B, Weymann A, et al. Long-term results after lung transplantation using organs from circulatory death donors: a propensity score-matched analysis dagger. Eur J Cardiothorac Surg. 2016;49(1):46–53. https://doi.org/10.1093/ejcts/ezv051.

    Article  PubMed  Google Scholar 

  33. Levvey BJ, Harkess M, Hopkins P, Chambers D, Merry C, Glanville AR, et al. Excellent clinical outcomes from a national donation-after-determination-of-cardiac-death lung transplant collaborative. Am J Transplant. 2012;12(9):2406–13. https://doi.org/10.1111/j.1600-6143.2012.04193.x.

    Article  CAS  PubMed  Google Scholar 

  34. • Krutsinger D, Reed RM, Blevins A, Puri V, De Oliveira NC, Zych B, et al. Lung transplantation from donation after cardiocirculatory death: a systematic review and meta-analysis. J Heart Lung Transplant. 2015;34(5):675–84. https://doi.org/10.1016/j.healun.2014.11.009 A meta-analysis of 6 observational cohort studies, finding no difference in 1-year mortality after lung transplant between DCD or DBD donors.

    Article  PubMed  Google Scholar 

  35. Valenza F, Rosso L, Gatti S, Coppola S, Froio S, Colombo J, et al. Extracorporeal lung perfusion and ventilation to improve donor lung function and increase the number of organs available for transplantation. Transplant Proc. 2012;44(7):1826–9. https://doi.org/10.1016/j.transproceed.2012.06.023.

    Article  CAS  PubMed  Google Scholar 

  36. Wallinder A, Ricksten SE, Hansson C, Riise GC, Silverborn M, Liden H, et al. Transplantation of initially rejected donor lungs after ex vivo lung perfusion. J Thorac Cardiovasc Surg. 2012;144(5):1222–8. https://doi.org/10.1016/j.jtcvs.2012.08.011.

    Article  PubMed  Google Scholar 

  37. Moreno P, Alvarez A, Santos F, Vaquero JM, Baamonde C, Redel J, et al. Extended recipients but not extended donors are associated with poor outcomes following lung transplantation. Eur J Cardiothorac Surg. 2014;45(6):1040–7. https://doi.org/10.1093/ejcts/ezt501.

    Article  PubMed  Google Scholar 

  38. Zych B, Garcia Saez D, Sabashnikov A, De Robertis F, Amrani M, Bahrami T, et al. Lung transplantation from donors outside standard acceptability criteria--are they really marginal? Transpl Int. 2014;27(11):1183–91. https://doi.org/10.1111/tri.12410.

    Article  PubMed  Google Scholar 

  39. Baldwin MR, Peterson ER, Easthausen I, Quintanilla I, Colago E, Sonett JR, et al. Donor age and early graft failure after lung transplantation: a cohort study. Am J Transplant. 2013;13(10):2685–95. https://doi.org/10.1111/ajt.12428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christie JD, Kotloff RM, Pochettino A, Arcasoy SM, Rosengard BR, Landis JR, et al. Clinical risk factors for primary graft failure following lung transplantation. Chest. 2003;124(4):1232–41.

    Article  PubMed  Google Scholar 

  41. Lowery EM, Kuhlmann EA, Mahoney EL, Dilling DF, Kliethermes SA, Kovacs EJ. Heavy alcohol use in lung donors increases the risk for primary graft dysfunction. Alcohol Clin Exp Res. 2014;38(11):2853–61. https://doi.org/10.1111/acer.12553.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pelaez A, Mitchell PO, Shah NS, Force SD, Elon L, Brown LA, et al. The role of donor chronic alcohol abuse in the development of primary graft dysfunction in lung transplant recipients. Am J Med Sci. 2015;349(2):117–23. https://doi.org/10.1097/MAJ.0000000000000361.

    Article  PubMed  PubMed Central  Google Scholar 

  43. •• Porteous MK, Lee JC, Lederer DJ, Palmer SM, Cantu E, Shah RJ, et al. Clinical risk factors and prognostic model for primary graft dysfunction after lung transplantation in patients with pulmonary hypertension. Ann Am Thorac Soc. 2017;14(10):1514–22. https://doi.org/10.1513/AnnalsATS.201610-810OC Uses a multi-center retrospective cohort to derive and then retrospectively validate a prognostic model for PGD, including donor, recipient, and operative variables.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Liu Y, Su L, Jiang SJ. Recipient-related clinical risk factors for primary graft dysfunction after lung transplantation: a systematic review and meta-analysis. PLoS One. 2014;9(3):e92773. https://doi.org/10.1371/journal.pone.0092773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang A, Studer S, Kawut SM, Ahya VN, Lee J, Wille K, et al. Elevated pulmonary artery pressure is a risk factor for primary graft dysfunction following lung transplantation for idiopathic pulmonary fibrosis. Chest. 2011;139(4):782–7. https://doi.org/10.1378/chest.09-2806.

    Article  PubMed  Google Scholar 

  46. Porteous MK, Ky B, Kirkpatrick JN, Shinohara R, Diamond JM, Shah RJ, et al. Diastolic dysfunction increases the risk of primary graft dysfunction after lung transplant. Am J Respir Crit Care Med. 2016;193(12):1392–400. https://doi.org/10.1164/rccm.201508-1522OC.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lederer DJ, Kawut SM, Wickersham N, Winterbottom C, Bhorade S, Palmer SM, et al. Obesity and primary graft dysfunction after lung transplantation: the Lung Transplant Outcomes Group Obesity Study. Am J Respir Crit Care Med. 2011;184(9):1055–61. https://doi.org/10.1164/rccm.201104-0728OC.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shah RJ, Diamond JM, Cantu E, Flesch J, Lee JC, Lederer DJ, et al. Objective estimates improve risk stratification for primary graft dysfunction after lung transplantation. Am J Transplant. 2015;15(8):2188–96. https://doi.org/10.1111/ajt.13262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Courtwright A, Cantu E. Evaluation and management of the potential lung donor. Clin Chest Med. 2017;38(4):751–9. https://doi.org/10.1016/j.ccm.2017.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Steen S, Sjoberg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. Lancet. 2001;357(9259):825–9. https://doi.org/10.1016/S0140-6736(00)04195-7.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu B, Suzuki Y, DiSanto T, Rubin S, Penfil Z, Pietrofesa RA, et al. Applications of out of body lung perfusion. Acad Radiol. 2018. https://doi.org/10.1016/j.acra.2018.05.022.

  52. Reeb J, Keshavjee S, Cypel M. Expanding the lung donor pool: advancements and emerging pathways. Curr Opin Organ Transplant. 2015;20(5):498–505. https://doi.org/10.1097/MOT.0000000000000233.

    Article  PubMed  Google Scholar 

  53. Popov AF, Sabashnikov A, Patil NP, Zeriouh M, Mohite PN, Zych B, et al. Ex vivo lung perfusion - state of the art in lung donor pool expansion. Med Sci Monit Basic Res. 2015;21:9–14. https://doi.org/10.12659/MSMBR.893674.

    Article  PubMed  PubMed Central  Google Scholar 

  54. • Cypel M, Yeung JC, Machuca T, Chen M, Singer LG, Yasufuku K, et al. Experience with the first 50 ex vivo lung perfusions in clinical transplantation. J Thorac Cardiovasc Surg. 2012;144(5):1200–6. https://doi.org/10.1016/j.jtcvs.2012.08.009 Details the results of a large cohort of recpients of high-risk donor lungs following EVLP, demonstrating increased use of available allografts with no impact on outcomes.

    Article  PubMed  Google Scholar 

  55. Tikkanen JM, Cypel M, Machuca TN, Azad S, Binnie M, Chow CW, et al. Functional outcomes and quality of life after normothermic ex vivo lung perfusion lung transplantation. J Heart Lung Transplant. 2015;34(4):547–56. https://doi.org/10.1016/j.healun.2014.09.044.

    Article  PubMed  Google Scholar 

  56. Barnard JB, Davies O, Curry P, Catarino P, Dunning J, Jenkins D, et al. Size matching in lung transplantation: an evidence-based review. J Heart Lung Transplant. 2013;32(9):849–60. https://doi.org/10.1016/j.healun.2013.07.002.

    Article  PubMed  Google Scholar 

  57. Ganapathi AM, Mulvihill MS, Englum BR, Speicher PJ, Gulack BC, Osho AA, et al. Transplant size mismatch in restrictive lung disease. Transpl Int. 2017;30(4):378–87. https://doi.org/10.1111/tri.12913.

    Article  PubMed  Google Scholar 

  58. Grimm JC, Valero V 3rd, Kilic A, Magruder JT, Merlo CA, Shah PD, et al. Association between prolonged graft ischemia and primary graft failure or survival following lung transplantation. JAMA Surg. 2015;150(6):547–53. https://doi.org/10.1001/jamasurg.2015.12.

    Article  PubMed  Google Scholar 

  59. Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation report-2017; focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36(10):1047–59. https://doi.org/10.1016/j.healun.2017.07.016.

    Article  PubMed  Google Scholar 

  60. Hoechter DJ, Shen YM, Kammerer T, Gunther S, Weig T, Schramm R, et al. Extracorporeal circulation during lung transplantation procedures: a meta-analysis. ASAIO J. 2017;63(5):551–61. https://doi.org/10.1097/MAT.0000000000000549.

    Article  PubMed  Google Scholar 

  61. Machuca TN, Collaud S, Mercier O, Cheung M, Cunningham V, Kim SJ, et al. Outcomes of intraoperative extracorporeal membrane oxygenation versus cardiopulmonary bypass for lung transplantation. J Thorac Cardiovasc Surg. 2015;149(4):1152–7. https://doi.org/10.1016/j.jtcvs.2014.11.039.

    Article  PubMed  Google Scholar 

  62. Nair P, Hoechter DJ, Buscher H, Venkatesh K, Whittam S, Joseph J, et al. Prospective observational study of hemostatic alterations during adult extracorporeal membrane oxygenation (ECMO) using point-of-care thromboelastometry and platelet aggregometry. J Cardiothorac Vasc Anesth. 2015;29(2):288–96. https://doi.org/10.1053/j.jvca.2014.06.006.

    Article  PubMed  Google Scholar 

  63. Biscotti M, Yang J, Sonett J, Bacchetta M. Comparison of extracorporeal membrane oxygenation versus cardiopulmonary bypass for lung transplantation. J Thorac Cardiovasc Surg. 2014;148(5):2410–5. https://doi.org/10.1016/j.jtcvs.2014.07.061.

    Article  PubMed  Google Scholar 

  64. Bermudez CA, Shiose A, Esper SA, Shigemura N, D’Cunha J, Bhama JK, et al. Outcomes of intraoperative venoarterial extracorporeal membrane oxygenation versus cardiopulmonary bypass during lung transplantation. Ann Thorac Surg. 2014;98(6):1936–42; discussion 42–3. https://doi.org/10.1016/j.athoracsur.2014.06.072.

    Article  PubMed  Google Scholar 

  65. Ius F, Kuehn C, Tudorache I, Sommer W, Avsar M, Boethig D, et al. Lung transplantation on cardiopulmonary support: venoarterial extracorporeal membrane oxygenation outperformed cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;144(6):1510–6. https://doi.org/10.1016/j.jtcvs.2012.07.095.

    Article  PubMed  Google Scholar 

  66. Felten ML, Sinaceur M, Treilhaud M, Roze H, Mornex JF, Pottecher J, et al. Factors associated with early graft dysfunction in cystic fibrosis patients receiving primary bilateral lung transplantation. Eur J Cardiothorac Surg. 2012;41(3):686–90. https://doi.org/10.1093/ejcts/ezr019.

    Article  PubMed  Google Scholar 

  67. Schnickel GT, Ross DJ, Beygui R, Shefizadeh A, Laks H, Saggar R, et al. Modified reperfusion in clinical lung transplantation: the results of 100 consecutive cases. J Thorac Cardiovasc Surg. 2006;131(1):218–23. https://doi.org/10.1016/j.jtcvs.2005.08.045.

    Article  PubMed  Google Scholar 

  68. Oto T, Levvey BJ, Whitford H, Griffiths AP, Kotsimbos T, Williams TJ, et al. Feasibility and utility of a lung donor score: correlation with early post-transplant outcomes. Ann Thorac Surg. 2007;83(1):257–63. https://doi.org/10.1016/j.athoracsur.2006.07.040.

    Article  PubMed  Google Scholar 

  69. Loor G, Radosevich DM, Kelly RF, Cich I, Grabowski TS, Lyon C, et al. The University of Minnesota donor lung quality index: a consensus-based scoring application improves donor lung use. Ann Thorac Surg. 2016;102(4):1156–65. https://doi.org/10.1016/j.athoracsur.2016.04.044.

    Article  PubMed  Google Scholar 

  70. Diamond JM, Ramphal K, Porteous MK, Cantu E 3rd, Christie JD, Kawut SM, et al. Association of long pentraxin-3 with pulmonary hypertension and primary graft dysfunction in lung transplant recipients. J Heart Lung Transplant. 2018;37(6):792–4. https://doi.org/10.1016/j.healun.2017.12.012.

    Article  PubMed  Google Scholar 

  71. Hashimoto K, Cypel M, Juvet S, Saito T, Zamel R, Machuca TN, et al. Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation. J Heart Lung Transplant. 2017;37:240–9. https://doi.org/10.1016/j.healun.2017.06.005.

    Article  Google Scholar 

  72. Pottecher J, Roche AC, Degot T, Helms O, Hentz JG, Schmitt JP, et al. Increased extravascular lung water and plasma biomarkers of acute lung injury precede oxygenation impairment in primary graft dysfunction after lung transplantation. Transplantation. 2017;101(1):112–21. https://doi.org/10.1097/TP.0000000000001434.

    Article  CAS  PubMed  Google Scholar 

  73. de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511. https://doi.org/10.1164/rccm.200207-670SO.

    Article  PubMed  Google Scholar 

  74. Diamond JM, Wigfield CH. Role of innate immunity in primary graft dysfunction after lung transplantation. Curr Opin Organ Transplant. 2013;18(5):518–23. https://doi.org/10.1097/MOT.0b013e3283651994.

    Article  CAS  PubMed  Google Scholar 

  75. Eppinger MJ, Jones ML, Deeb GM, Bolling SF, Ward PA. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res. 1995;58(6):713–8. https://doi.org/10.1006/jsre.1995.1112.

    Article  CAS  PubMed  Google Scholar 

  76. Eppinger MJ, Deeb GM, Bolling SF, Ward PA. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol. 1997;150(5):1773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fiser SM, Tribble CG, Long SM, Kaza AK, Cope JT, Laubach VE, et al. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg. 2001;121(6):1069–75. https://doi.org/10.1067/mtc.2001.113603.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma AK, Mulloy DP, Le LT, Laubach VE. NADPH oxidase mediates synergistic effects of IL-17 and TNF-alpha on CXCL1 expression by epithelial cells after lung ischemia-reperfusion. Am J Physiol Lung Cell Mol Physiol. 2014;306(1):L69–79. https://doi.org/10.1152/ajplung.00205.2013.

    Article  CAS  PubMed  Google Scholar 

  79. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293–307. https://doi.org/10.2119/molmed.2010.00138.

    Article  CAS  PubMed  Google Scholar 

  80. Gelman AE, Fisher AJ, Huang HJ, Baz MA, Shaver CM, Egan TM, et al. Report of the ISHLT Working Group on primary lung graft dysfunction part III: mechanisms: a 2016 consensus group statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2017;36(10):1114–20. https://doi.org/10.1016/j.healun.2017.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Morrison MI, Pither TL, Fisher AJ. Pathophysiology and classification of primary graft dysfunction after lung transplantation. J Thorac Dis. 2017;9(10):4084–97. https://doi.org/10.21037/jtd.2017.09.09.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Somers J, Ruttens D, Verleden SE, Vandermeulen E, Piloni D, Wauters E, et al. Interleukin-17 receptor polymorphism predisposes to primary graft dysfunction after lung transplantation. J Heart Lung Transplant. 2015;34(7):941–9. https://doi.org/10.1016/j.healun.2015.03.009.

    Article  PubMed  Google Scholar 

  83. Patel BV, Wilson MR, O'Dea KP, Takata M. TNF-induced death signaling triggers alveolar epithelial dysfunction in acute lung injury. J Immunol. 2013;190(8):4274–82. https://doi.org/10.4049/jimmunol.1202437.

    Article  CAS  PubMed  Google Scholar 

  84. Sharma AK, LaPar DJ, Stone ML, Zhao Y, Kron IL, Laubach VE. Receptor for advanced glycation end products (RAGE) on iNKT cells mediates lung ischemia-reperfusion injury. Am J Transplant. 2013;13(9):2255–67. https://doi.org/10.1111/ajt.12368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cantu E, Shah RJ, Lin W, Daye ZJ, Diamond JM, Suzuki Y, et al. Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg. 2015;149(2):596–602. https://doi.org/10.1016/j.jtcvs.2014.09.077.

    Article  CAS  PubMed  Google Scholar 

  86. Machuca TN, Cypel M, Yeung JC, Bonato R, Zamel R, Chen M, et al. Protein expression profiling predicts graft performance in clinical ex vivo lung perfusion. Ann Surg. 2015;261(3):591–7. https://doi.org/10.1097/SLA.0000000000000974.

    Article  PubMed  Google Scholar 

  87. Cantu E, Suzuki Y, Diamond JM, Ellis J, Tiwari J, Beduhn B, et al. Protein quantitative trait loci analysis identifies genetic variation in the innate immune regulator TOLLIP in post-lung transplant primary graft dysfunction risk. Am J Transplant. 2016;16(3):833–40. https://doi.org/10.1111/ajt.13525.

    Article  CAS  PubMed  Google Scholar 

  88. •• Cantu E, Lederer DJ, Meyer K, Milewski K, Suzuki Y, Shah RJ, et al. Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation. Am J Transplant. 2013;13(7):1898–904. https://doi.org/10.1111/ajt.12283 Novel study comparing genes present in the BAL fluid of donors and recipients. Amongst recipients with severe PGD, eight gene sets were found to be upregulated. These genes implicate the innate immune system as a key mediator of severe PGD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki Y, Cantu E, Christie JD. Primary graft dysfunction. Semin Respir Crit Care Med. 2013;34(3):305–19. https://doi.org/10.1055/s-0033-1348474.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bermudez CA, Adusumilli PS, McCurry KR, Zaldonis D, Crespo MM, Pilewski JM, et al. Extracorporeal membrane oxygenation for primary graft dysfunction after lung transplantation: long-term survival. Ann Thorac Surg. 2009;87(3):854–60. https://doi.org/10.1016/j.athoracsur.2008.11.036.

    Article  PubMed  Google Scholar 

  92. Hartwig MG, Walczak R, Lin SS, Davis RD. Improved survival but marginal allograft function in patients treated with extracorporeal membrane oxygenation after lung transplantation. Ann Thorac Surg. 2012;93(2):366–71. https://doi.org/10.1016/j.athoracsur.2011.05.017.

    Article  PubMed  Google Scholar 

  93. • Mulvihill MS, Yerokun BA, Davis RP, Ranney DN, Daneshmand MA, Hartwig MG. Extracorporeal membrane oxygenation following lung transplantation: indications and survival. J Heart Lung Transplant. 2017. https://doi.org/10.1016/j.healun.2017.06.014 UNOS registry analysis identifying risk factors for need for ECMO post-transplant, and the outcomes amongst these patients.

    Article  Google Scholar 

  94. Osho AA, Castleberry AW, Snyder LD, Palmer SM, Ganapathi AM, Hirji SA, et al. Differential outcomes with early and late repeat transplantation in the era of the lung allocation score. Ann Thorac Surg. 2014;98(6):1914–20; discussion 20–1. https://doi.org/10.1016/j.athoracsur.2014.06.036.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yusen RD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Dobbels F, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-first adult lung and heart-lung transplant report--2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33(10):1009–24. https://doi.org/10.1016/j.healun.2014.08.004.

    Article  PubMed  Google Scholar 

  96. Reeb J, Cypel M. Ex vivo lung perfusion. Clin Transpl. 2016;30(3):183–94. https://doi.org/10.1111/ctr.12680.

    Article  Google Scholar 

  97. Pharmacokinetics of Imipenem During Ex Vivo Lung Perfusion (EVLP). Accessed 18 Aug 2018. https://clinicaltrials.gov/ct2/show/NCT02670239?term=Pharmacokinetics+of+Imipenem+During+Ex+Vivo+Lung+Perfusion+%28EVLP%29&rank=1

  98. Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration (REALIST). Accessed 18 Aug 2018. https://clinicaltrials.gov/ct2/show/NCT03042143?term=Repair+of+Acute+Respiratory+Distress+Syndrome+by+Stromal+Cell+Administration+%28REALIST%29.&rank=1

  99. Trial to Evaluate the Safety and Effectiveness of the Portable Organ Care System (OCS™) Lung System for Recruiting, Preserving and Assessing Non-Ideal Donor Lungs for Transplantation. Accessed 18 Aug 2018. https://clinicaltrials.gov/ct2/show/NCT03343535?term=Trial+to+Evaluate+the+Safety+and+Effectiveness+of+the+Portable+Organ+Care+System+%28OCS%E2%84%A2%29+Lung+System+for+Recruiting%2C+Preserving+and+Assessing+Non-Ideal+Donor+Lungs+for+Transplantation&rank=1

  100. Mulloy DP, Sharma AK, Fernandez LG, Zhao Y, Lau CL, Kron IL, et al. Adenosine A3 receptor activation attenuates lung ischemia-reperfusion injury. Ann Thorac Surg. 2013;95(5):1762–7. https://doi.org/10.1016/j.athoracsur.2013.01.059.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, et al. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg. 2018;156(2):910–7. https://doi.org/10.1016/j.jtcvs.2018.02.090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin H, Chen M, Tian F, Tikkanen J, Ding L, Andrew Cheung HY, et al. alpha1-Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J Heart Lung Transplant. 2018;37(5):656–66. https://doi.org/10.1016/j.healun.2017.09.019.

    Article  PubMed  Google Scholar 

  103. Gotzfried J, Smirnova NF, Morrone C, Korkmaz B, Yildirim AO, Eickelberg O, et al. Preservation with alpha1-antitrypsin improves primary graft function of murine lung transplants. J Heart Lung Transplant. 2018;37(8):1021–8. https://doi.org/10.1016/j.healun.2018.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gao W, Zhao J, Kim H, Xu S, Chen M, Bai X, et al. alpha1-Antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death. J Heart Lung Transplant. 2014;33(3):309–15. https://doi.org/10.1016/j.healun.2013.10.031.

    Article  PubMed  Google Scholar 

  105. Charles EJ, Mehaffey JH, Sharma AK, Zhao Y, Stoler MH, Isbell JM, et al. Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism. J Thorac Cardiovasc Surg. 2017;154(5):1811–20. https://doi.org/10.1016/j.jtcvs.2017.02.072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Struber M, Fischer S, Niedermeyer J, Warnecke G, Gohrbandt B, Gorler A, et al. Effects of exogenous surfactant instillation in clinical lung transplantation: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2007;133(6):1620–5. https://doi.org/10.1016/j.jtcvs.2006.12.057.

    Article  CAS  PubMed  Google Scholar 

  107. Amital A, Shitrit D, Raviv Y, Saute M, Medalion B, Bakal L, et al. The use of surfactant in lung transplantation. Transplantation. 2008;86(11):1554–9. https://doi.org/10.1097/TP.0b013e31818a8418.

    Article  CAS  PubMed  Google Scholar 

  108. Aigner C, Slama A, Barta M, Mitterbauer A, Lang G, Taghavi S, et al. Treatment of primary graft dysfunction after lung transplantation with orally inhaled AP301: a prospective, randomized pilot study. J Heart Lung Transplant. 2017;37:225–31. https://doi.org/10.1016/j.healun.2017.09.021.

    Article  Google Scholar 

  109. Human Mesenchymal Stem Cells For Acute Respiratory Distress Syndrome (START). Accessed 18 Aug 2018. https://clinicaltrials.gov/ct2/show/NCT02097641?term=Human+Mesenchymal+Stem+Cells+For+Acute+Respiratory+Distress+Syndrome+%28START%29&rank=1

  110. A Phase 1/2 Study to Assess MultiStem® Therapy in Acute Respiratory Distress Syndrome. Accessed 18 Aug 2018. https://clinicaltrials.gov/ct2/show/NCT02611609?term=A+Phase+1%2F2+Study+to+Assess+MultiStem%C2%AE+Therapy+in+Acute+Respiratory+Distress+Syndrome&rank=1

  111. OCS™ Lung TOP Registry. https://clinicaltrials.gov/ct2/show/NCT03639025?cond=OCS%E2%84%A2+Lung+TOP+Registry&rank=1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Cantu.

Ethics declarations

Conflict of Interest

Justin Rosenheck, Colleen Pietras, and Edward Cantu declare no conflict of interest.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Lung Transplant

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenheck, J., Pietras, C. & Cantu, E. Early Graft Dysfunction After Lung Transplantation. Curr Pulmonol Rep 7, 176–187 (2018). https://doi.org/10.1007/s13665-018-0213-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-018-0213-4

Keywords

Navigation